# Co-factor analysis of citation networks<sup>\*</sup>

Alex Hayes<sup>†</sup>

Department of Statistics, University of Wisconsin-Madison and Karl Rohe

Department of Statistics, University of Wisconsin-Madison

October 3, 2024

#### Abstract

One compelling use of citation networks is to characterize papers by their relationships to the surrounding literature. We propose a method to characterize papers by embedding them into two distinct "co-factor" spaces: one describing how papers send citations, and the other describing how papers receive citations. This approach presents several challenges. First, older documents cannot cite newer documents, and thus it is not clear that co-factors are even identifiable. We resolve this challenge by developing a co-factor model for asymmetric adjacency matrices with missing lower triangles and showing that identification is possible. We then frame estimation as a matrix completion problem and develop a specialized implementation of matrix completion because prior implementations are memory bound in our setting. Simulations show that our estimator has promising finite sample properties, and that naive approaches fail to recover latent co-factor structure. We leverage our estimator to investigate 255,780 papers published in statistics journals from 1898 to 2024, resulting in the most comprehensive topic model of the statistics literature to date. We find interpretable co-factors corresponding to many statistical subfields, including time series, variable selection, spatial methods, graphical models, GLM(M)s, causal inference, multiple testing, quantile regression, semiparametrics, dimension reduction, and several more.

*Keywords:* co-factor models, spectral network analysis, matrix completion, missing data, stochastic blockmodels

<sup>\*</sup>The Version of Record of this manuscript has been published and is available in the Journal of Computational Graphics and Statistics at http://www.tandfonline.com/10.1080/10618600.2024.2394464.

<sup>&</sup>lt;sup>†</sup>This project was supported by the NSF under Grant DMS-1916378; NSF under Grant DMS-1612456; and the ARO under Grant W911NF-15-1-0423.

## 1 Introduction

Suppose we have a collection of written documents, and these documents cite each other. For example, the documents might be academic papers, judicial opinions, or patents, among other possibilities. One useful way to understand individual documents in the collection, and the collection as a whole, is to find documents that cite, and are cited, in similar ways. These documents are likely to be about the same subject, and can thus reveal information about important topics in the corpus.

We develop a network-based approach to understanding the structure in citation corpora, called CitationImpute. CitationImpute begins by representing a corpus as a network, where each document corresponds to a node, and citations between documents correspond to directed edges. Then, it uses a spectral factorization technique to embed each document into two distinct latent spaces, one characterizing how papers cite, and the other characterizing how papers get cited.

Unlike prior approaches to citation analysis, CitationImpute models citations from older documents to newer documents as structurally missing. As a consequence, our algorithm must estimate singular subspaces via matrix completion methods. Existing matrix completion methods are computationally prohibitive in this setting, so we develop a singular subspace estimator with reasonable time and space complexity.

After estimating singular subspaces, CitationImpute uses varimax rotation to identify latent factors in the network (as opposed to k-means, or k-medians clustering). This allows each document to have a weighted membership in each cluster. The overall procedure can be understood intuitively in the context of stochastic blockmodels, but is appropriate for a much broader class of low-rank network models.

We validate the new procedure with a simulation study, finding that the new estimator recovers latent factors under a partially observed stochastic blockmodel. Finally, we analyze 255,780 statistics papers and 2.2 million citations published in journals on statistics and probability, producing a comprehensive breakdown of topics in the statistics literature. We present the keywords most associated with these topics in Table 1 (factors describing how papers get cited) and Table 2 (factors describing how papers cite).

CitationImpute is related to several lines of extant work, most notably empirical investigations of the academic statistics literature. Selby (2020) and Stigler (1994) consider relationships between statistics papers and the larger academic literature, with Selby (2020) reviewing approaches to community detection in networks and suggesting a number of diagnostic techniques for assessing model fit. Ji et al. (2022), an expansion of Ji and Jin (2016), considers a dataset with about a third as many papers as our own, and investigates undirected (and dynamic) networks of academic authors based on co-authorship and co-citation. Ji et al. (2022) estimates researcher interests by embedding researchers into a three-dimensional latent space. In contrast, we model the topics of individual manuscripts, and co-embed manuscripts into much more detailed thirty-dimensional "sending" and "receiving" latent spaces. Rohe and Zeng (2023) co-factor a directed network of journal-journal citation counts using varimax factor analysis, but aggregates citations over time and thus avoids the chronological missingness we consider here.

| Factor Name                    | Top words                                                          | ID  |
|--------------------------------|--------------------------------------------------------------------|-----|
| non-convex penalties           | selection, variable, penalized, oracle, lasso, nonconcave          | y01 |
| feature screening              | screening, dimensional, ultrahigh, feature, independence, high     | y02 |
| bayesian model selection       | bayesian, models, complexity, disease, model, fit                  | y03 |
| post-selection inference       | high, dimensional, lasso, regression, confidence, dantzig          | y04 |
| survival analysis              | survival, censored, hazards, proportional, cox, regression         | y05 |
| information criteria           | model, clustering, mixture, selection, dimension, mixtures         | y06 |
| causal inference               | propensity, causal, score, observational, treatment, effects       | y07 |
| multiple testing               | false, discovery, multiple, rate, testing, controlling             | y08 |
| graphical models               | graphical, covariance, estimation, sparse, lasso, high             | y09 |
| bayesian non-parametrics       | dirichlet, bayesian, nonparametric, mixture, mixtures, priors      | y10 |
| supervised dimension reduction | dimension, reduction, regression, sliced, inverse, sufficient      | y11 |
| LASSO (optimization)           | lasso, regularization, coordinate, descent, selection, via         | y12 |
| LASSO (classic)                | lasso, selection, shrinkage, regression, via, longitudinal         | y13 |
| kriging                        | spatial, gaussian, datasets, covariance, large, temporal           | y14 |
| empirical likelihood           | empirical, likelihood, confidence, ratio, intervals, regions       | y15 |
| GLM(M)s                        | longitudinal, data, generalized, models, estimating, binary        | y16 |
| functional data                | functional, regression, principal, data, linear, longitudinal      | y17 |
| skew normals                   | skew, normal, distributions, multivariate, distribution, t         | y18 |
| quantile regression            | quantile, regression, quantiles, censored, median, estimation      | y19 |
| bayesian model selection       | bayesian, selection, variable, bayes, priors, prior                | y20 |
| missing data                   | missing, imputation, data, longitudinal, nonignorable, nonresponse | y21 |
| adaptive clinical trials       | trials, clinical, adaptive, sequential, group, multiple            | y22 |
| splines + random effects       | models, mixed, splines, smoothing, longitudinal, regression        | y23 |
| multivariate analysis          | covariance, matrices, high, dimensional, large, matrix             | y24 |
| MCMC                           | monte, carlo, markov, metropolis, chain, bayesian                  | y25 |
| single index models            | coefficient, varying, models, index, single, partially             | y26 |
| causal semiparametrics         | missing, semiparametric, regression, sampling, data, estimation    | y27 |
| individual/optimal treatment   | treatment, regimes, individualized, learning, optimal, estimating  | y28 |
| RIDGE                          | ridge, regression, biased, linear, estimators, estimator           | y29 |
| cure models                    | cure, survival, censored, rate, mixture, hazards                   | y30 |

#### Table 1: Keywords for Y (incoming citation) factors

Methodologically, CitationImpute is an extension of the varimax rotation technique studied in Rohe and Zeng (2023), and is closely related to co-clustering methods (Rohe et al., 2016; Choi and Wolfe, 2014; Choi, 2017), as well as clustering methods for bipartite networks (Larremore et al., 2014; Razaee et al., 2019; Yen and Larremore, 2020), some of which can be extended to handle missing data (Zhao et al., 2022; Peixoto, 2018). While there is a large literature on network clustering with missing data, these techniques cannot be used for co-factoring and co-clustering. Nonetheless, some techniques similarly leverage nuclear norm penalized singular subspace estimation to handle missing edges (Chen et al., 2014; Vinayak et al., 2014; Li et al., 2020). There have also been some efforts to incorporate topic structure into preferential attachment models (Pollner et al., 2006; Hajek and Sankagiri, 2019), bridging the gap between mixture modelling and more traditional bibliometric analysis (Price, 1976).

Finally, our work is related to the general matrix completion literature, in particular nuclear norm penalization approaches for estimating partially observed matrices (Kim and Choi, 2013; Gu et al., 2014; Klopp, 2014; Cui et al., 2015; Hosono et al., 2016; Gu et al., 2017; Zhang and Ng, 2019; Yang et al., 2022; Shamir and Shalev-Shwartz, 2014; Bhojanapalli and Jain, 2014; Cho et al., 2019; Mazumder et al., 2010). While this literature has recently made impressive inroads regarding the consistency of nuclear-norm regularization for spectral recovery in deterministic and non-uniform sampling settings (Foucart et al., 2021; Zhu et al.,

2022), we are unaware of consistency results for the upper triangular observation pattern present in citation data, and thus validate our approach with simulations.

#### Notation

Let  $\mathbf{u}_i(A), \mathbf{\lambda}_i(A), \mathbf{v}_i(A)$  be functions that return the  $i^{th}$  left singular vector, singular value, and right singular vector of a matrix A, respectively. Similarly, define  $\mathbf{\lambda}_i^2(A) = (\mathbf{\lambda}_i(A))^2$ . We use  $\langle \cdot, \cdot \rangle$  to denote the Frobenius inner product and  $\|\cdot\|_F$  the Frobenius norm. Let  $A_i$  denote the  $i^{th}$  row of a matrix A and  $A_{\cdot j}$  denote the  $j^{th}$  column. For a partially observed matrix A, let  $\Omega_A$ be the set  $\{(i, j) : A_{ij} \text{ is observed}\}$  and  $\tilde{\Omega}_A$  be the set  $\{(i, j) : A_{ij} \text{ is observed and non-zero}\}$ ; when A is clear from context we will omit the subscript A. By  $Y_A$  (Y when the context is clear) we denote the binary matrix such that  $Y_{ij}$  is one when  $(i, j) \in \Omega_A$  and zero otherwise.  $\odot$  indicates elementwise multiplication between two matrices with the same dimensions. We use  $P_{\Omega_A}(B) = B \odot Y_A$  to denote the projection of a matrix B onto observed support of another matrix A, and  $P_{\Omega_A}^{\perp}(B) = B \odot (1 - Y_A)$ . Let  $P_\ell(A)$  denote the "clipping" projection that sets the first  $\ell$  columns and the last  $\ell$  rows of A all to zero. Finally,  $g(n) = \mathcal{O}(f(n))$ means that  $\lim_{n\to\infty} g(n)/f(n) \leq M$  for some constant M. All proofs are deferred to the Appendix.

### 2 Model

#### 2.1 Co-factor model

We use the co-factor model of Rohe and Zeng (2023) as a model for latent similarities between documents. The co-factor model is a low-rank, distributionally agnostic generalization of the stochastic co-blockmodel (Holland et al., 1983; Rohe et al., 2016), and includes sub-models such as stochastic blockmodels, degree-corrected stochastic blockmodels (Karrer and Newman, 2011), (degree-corrected) mixed membership stochastic blockmodels (Airoldi et al., 2008; Jin et al., 2024), latent dirichlet allocation (Blei et al., 2003), and (generalized) random dot product graphs (Lyzinski et al., 2014), many of which are closely related to topic models (Gerlach et al., 2018).

In the co-factor model, each document *i* possesses two co-factors. One co-factor,  $Z_i \in \mathbb{R}^k$ , controls outgoing citations, or the topics that a paper is likely to cite, and the other co-factor,  $Y_i \in \mathbb{R}^k$ , controls incoming citations, or the topics that a paper is likely to be cited by. The co-factor structure of the model operationalizes the fundamental difference between citing and being cited. Mathematically, co-factor models are generalizations of factor models, and there are compelling reasons to model full co-factor structure: co-factor structure is theoretically necessary to capture key features of real world network data (Chanpuriya et al., 2020), an observation empirically verified by Rohe et al. (2016) and Qing and Wang (2022), among others.

**Example 2.1.** Consider Tibshirani (1996), which introduced LASSO regression. The LASSO paper builds upon a small body of statistical work on variable selection and resampling, but itself forms the basis for a large body of applied work, especially in genomics and biomedical settings. The directionality of citations is clear in the reference counts: Tibshirani (1996)

cites twenty papers, but is cited by tens of thousands of papers. If we do not distinguish between papers cited and citing papers, we might fail to distinguish between the genomics literature (incoming co-topic) and the variable selection literature (outgoing co-topic), as well as differing propensities to cite and to be cited.

In the co-factor model, conditional on the latent factors, each edge  $A_{ij}$  of the network is sampled independently from a distribution with expectation  $\mathcal{A} \equiv \mathbb{E}(A \mid Z, B, Y) = ZBY^T \in \mathbb{R}$  where  $B \in \mathbb{R}^{k \times k}$  is a mixing matrix that controls how the outgoing and incoming latent factors interact. In the citation setting,  $\mathcal{A}$  represents the similarities between documents in the latent topic space. B is a weighting matrix that describes how likely it is that a document i loading on outgoing factor  $Z_{\cdot k}$  forms an edge to a document j loading on incoming factor  $Y_{\cdot \ell}$ . As the B-mediated similarity between the outgoing topic of document i and the incoming similarity of document j increases, (i.e.  $\mathcal{A}_{ij}$  gets larger), the probability of citation  $i \to j$ goes up.

For the co-factor model to be identified, the co-factors Z and Y and the mixing matrix B must satisfy several assumptions: the mixing matrix B must be full rank, the rows of Z and Y must be independent and identically distributed (that is,  $Z_1, Z_2, ..., Z_n$ . must be i.i.d, and  $Y_1, Y_2, ..., Y_n$ . must be i.i.d.), and the distribution of the  $Z_i$  and  $Y_i$ . must be leptokurtic (i.e., skewed). Skewness is the key assumption for Z and Y to be identified. When Z and Y come from leptokurtic distributions, the co-factors Z and Y are identified up to sign-flips and permutations of the column order.

The co-factor model is similar in form to mixed membership stochastic blockmodels, and generalizes the mixed membership stochastic blockmodel (see the supplement of Rohe and Zeng (2023) for a precise characterization). Unlike mixed membership stochastic blockmodels, the rows of Z and Y do not need to normalized, and can take on negative values. In practice, the sign ambiguity of Z and Y can almost always be resolved by forcing the columns of Z and Y to be skew positive, in which case Z and Y typically consist of sparse, axis-aligned, positive values. The sparsity of Z and Y often enables substantive interpretations of the latent factors, as each node typically loads on a small number of factors.

#### 2.2 Chronological observation mechanism

To specialize the co-factor model to the citation setting, we incorporate an observation mechanism.

**Definition 2.1.** Given a corpus of documents i = 1, ..., n published at times  $T_1, ..., T_n$ , the partially observed adjacency matrix is

$$A_{ij} = \begin{cases} 1 & \text{if } T_j \leq T_i \text{ and } i \text{ cites } j, \\ 0 & \text{if } T_j \leq T_i \text{ and } i \text{ does not cite } j, \text{ and} \\ \text{unobserved} & \text{if } T_j > T_i. \end{cases}$$
(2.1)

For convenience, we re-index the documents in order of publishing times, forcing  $T_1 \ge ... \ge T_n$ , such that  $T_1$  is the most recent publishing time, and  $T_n$  is the earliest publishing time. Using this indexing scheme, the observed portion of the network is nearly upper triangular, but elements can occur in the lower triangle when  $T_i = T_j$ . Under the citation observation mechanism, citations from older papers to newer papers are missing. This is because the lack of citations from older papers to newer papers should be uninformative about the outgoing co-factor of the older paper and the incoming co-factor of the newer paper.

If we presume that the older paper definitively cites the newer paper, or definitively does not cite the newer paper, this will force the corresponding co-factors closer together or farther apart in the latent topic space. CitationImpute thus treats citations forward-in-time as missing rather than precisely observed zeroes or ones. This allows the estimation procedure to spectrally infer co-factors without introducing chronological artifacts.

**Example 2.2.** Consider Hoerl and Kennard (1970), which introduced RIDGE regression. Since the RIDGE paper was published long before the LASSO paper, Hoerl and Kennard (1970) does not cite Tibshirani (1996). But, since RIDGE regression and LASSO regression are closely related, it is plausible that the two papers are close to each other in outgoing topic space. The impossibility of citation forward-in-time is uninformative about the latent similarity between the two papers.

**Remark 2.1.** The chronological observation mechanism is only relevant if citations are directed relationships. If there is no semantic information contained in the direction of a citation, we can impute the lower triangle of A based on the upper triangle of A by setting  $A_{ij} = A_{ji}$  for all missing edges.

**Remark 2.2.** In some settings, such as the scientific literature, documents might build on each other, with later documents iterating on past work. In a co-factor model, one could argue that this should be modeled as dependence amongst the latent factors. We are not aware of any approaches to handle such dependence, but believe they are an interesting topic for future work.

### 2.3 Statistical identification of latent co-factors

The chronological observation mechanism presents several challenges. First, it is unclear if the co-factors Z and Y are identified based on the information observed in the upper triangle of A.

In Proposition 2.1, we show that outgoing community memberships  $Z_i$  are identified for all but the very earliest documents, and that the incoming community memberships  $Y_i$  are identified for all but the most recent documents. Some co-factors are unidentified because the most recent documents have not been around long enough to possibly be cited by papers from all topics and because oldest documents were written too early to possibly cite papers from all topics.

More precisely, Proposition 2.1 states that if the conditional expectation of a citation network  $\mathcal{A}$  is rank k and the  $\ell_z \times \ell_y$  submatrix in the top right of  $\mathcal{A}$  is rank k, it is possible to reconstruct all of  $\mathcal{A}$  except for the elements in the last  $\ell_z$  rows and the elements in the first  $\ell_y$ columns. Observing a full rank matrix M in the top right of  $\mathcal{A}$  ensures that no information is hidden in the lower triangle (see Figure 1).

The statement of Proposition 2.1 requires some additional notation. Let  $\mathscr{R}_{n,k}$  be the set of rank k matrices contained in  $\mathbb{R}^{n \times n}$ . Imagine that  $\mathcal{A}, \mathcal{B} \in \mathscr{R}_{n,k}$  are the conditional expectations

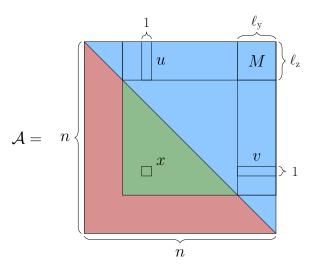



Figure 1: A decomposition of a conditional expectation matrix  $\mathcal{A}$ . Elements in the upper triangle are observed in the citation setting. We would like to recover elements of the lower triangle based on the information in the upper triangle. When rank $(\mathcal{A}) = \operatorname{rank}(\mathcal{M})$ , a portion of the lower triangle is identified, but the left-most rows and bottom-most columns cannot be recovered.

of two semi-parametric factor models.  $P_U(\mathcal{A})$  and  $P_U(\mathcal{B})$  are projections of  $\mathcal{A}$  and  $\mathcal{B}$  onto the space of upper triangular matrices.  $P_U(\mathcal{A})$  and  $P_U(\mathcal{B})$  represent the conditional expectations of the observed portion of  $\mathcal{A}$  and  $\mathcal{B}$ , respectively.

**Proposition 2.1.** Let  $\mathcal{A}, \mathcal{B} \in \mathscr{R}_{n,k}$ . If  $P_U(\mathcal{A}) = P_U(\mathcal{B})$  and there exist  $\ell_z, \ell_y \in \{k, ..., n/2\}$ such that  $M = \mathcal{A}_{[1:\ell_z,(n-\ell_y):n]}$  has rank k, then  $\mathcal{A}_{ij} = \mathcal{B}_{ij}$  for all  $i, j \in \mathbb{Z}$  satisfying  $1 < i \leq (n-\ell_z)$  and  $\ell_y < j \leq n$ .

**Remark 2.3.** Proposition 2.1 can be understood constructively as approximating  $\mathcal{A}$  from  $P_U(A)$  using the Nyström method (Drineas and Mahoney, 2005; Gittens and Mahoney, 2016). Because  $\mathcal{A}$  is rank k, the Nyström method has zero approximation error.

When the conditions of Proposition 2.1 are violated, it is possible that no elements in the lower triangle of  $\mathcal{A}$  are recoverable. That is, if M is rank k only for  $\ell_z, \ell_y > n/2$ , there is information hidden in the lower triangle of  $\mathcal{A}$  that is lost upon projecting onto the upper triangle. A concrete example where recovery is impossible is given by the following matrix  $\mathcal{A}$ , which has rank two. Let  $J_n$  denote an  $n \times n$  matrix of ones and suppose

$$\mathcal{A} = \begin{bmatrix} a J_{n/2} & a J_{n/2} \\ b J_{n/2} & a J_{n/2} \end{bmatrix}.$$

Every element in the upper triangle of  $\mathcal{A}$  is a, and thus there is no way of estimating b when the lower triangle of  $\mathcal{A}$  is missing.  $\mathcal{A}$  corresponds to a two-block stochastic blockmodel where the first n/2 documents are in one block and the last n/2 documents are in a separate block. Because these blocks of documents do not overlap in time (here represented by node order) and they have asymmetric citation probabilities, all information about asymmetric citation probabilities is lost. However, if n is large and the rows and columns of  $\mathcal{A}$  are permuted according to the same random permutation, then there are  $\ell_z, \ell_y \ll n/2$  that satisfies the conditions of Proposition 2.1 with high probability.

For balanced stochastic co-blockmodels, such as the one used in the simulation study, it is sufficient to take  $\ell_z = \ell_y = 2k \log k$  to achieve identifiability with high probability. This demonstrates that identification with  $\ell_z, \ell_y \ll n/2$  is reasonable in blockmodel-like settings.

**Proposition 2.2.** Suppose  $\mathcal{A}$  characterizes the expected adjacency matrix of the simulation test-bed model (Definition 4.2). Let  $\ell_z = \ell_y = 2k \log k$  and let M be as defined in Proposition 2.1. Then  $\mathbb{P}(\operatorname{rank}(M) = k) = 1 - 2n^{-1}$ .

### **3** Spectral estimation

Spectral clustering typically proceeds in three steps. First, the network is represented as a matrix, often the adjacency matrix, but sometimes normalized or regularized versions of the graph Laplacian. Second, the leading singular vectors of this matrix are estimated, which associates each node in the graph with a point in Euclidean space. Lastly, these node embeddings are analyzed using standard methods for Euclidean data. While this estimation strategy may seem ad hoc, spectral estimators performs statistical inference under network models that are identified by their singular subspaces, a large class of models that includes stochastic blockmodels and many generalizations thereof (von Luxburg, 2007; Ji and Jin, 2016; Jin, 2015; Lei and Rinaldo, 2015; Rohe et al., 2016; Lyzinski et al., 2017; Athreya et al., 2015, 2018; Lyzinski et al., 2014; Priebe et al., 2019).

#### 3.1 The algorithm

CitationImpute adapts the standard spectral estimation pipeline to the citation setting. The main difference is that we cannot estimate singular subspaces of the adjacency matrix using a singular value decomposition, due to missing data. Instead, CitationImpute uses the AdaptiveImpute algorithm of Cho et al. (2019), which is a self-tuning variant of the softImpute algorithm of Mazumder et al. (2010).

CitationImpute accepts as input a network adjacency matrix  $A \in \mathbb{R}^{n \times n}$  where the lower triangle is assumed to be mostly missing, a desired number of co-factors  $k \in \{2, ..., n\}$ , and clipping parameters  $\ell_z, \ell_y \in \{k, ..., n/2\}$ . The algorithm then proceeds as follows.

- 1. Set all elements in the first  $\ell_y$  columns of A and last  $\ell_z$  rows of A to zero. This means that edges corresponding to the unidentified rows of Z and Y are ignored during estimation; see Proposition 2.1 for details.
- 2. Estimate the singular vectors and singular values of  $A \approx \widehat{U}\widehat{D}\widehat{V}^T$  using AdaptiveImpute (Cho et al., 2019). In Section 3.2 we describe why a naive implementation is computationally infeasible, and in Section 3.3 we outline our computational contributions and a practical implementation of AdaptiveImpute for upper triangular data.
- 3. Compute the varimax rotations of  $\hat{U}$  and  $\hat{V}$  and construct rotated singular vector matrices  $\hat{Z}, \hat{B}$  and  $\hat{Y}$ , respectively. We briefly review varimax rotation in Section 3.4.

CitationImpute has several hyperparameters: the number of desired co-factors k, and the clipping parameters  $\ell_z$  and  $\ell_y$ . In simulations, we find that  $\ell_z = \ell_y = n/10$  are good default values, but recommend applying domain knowledge as appropriate, and conducting a sensitivity analysis (see Section 5.2 for an example).

#### 3.2 The computational problem

One contribution of this paper is a collection of algebraic identities (Propositions 3.1 and 3.2) that allow for an efficient implementation of AdaptiveImpute on citation matrices with hundreds of thousands of documents.

To understand why these identities are useful, we must disambiguate between two senses of sparsity. A matrix is *sparse* if most of its elements are zero. These matrices can be represented very efficiently on a computer by recording only the small number of non-zero elements and their indices. On the other hand, a matrix is *sparsely observed* if only a few of its entries are observed, regardless of the value of those entries. These two notations of sparsity are often conflated, and sparsely observed matrices are often represented as sparse matrices, where implicit zeroes are considered missing, and the observed zeroes must be explicitly tracked.

In the citation setting, the data matrix A, as defined in (2.1), is densely observed; at least half of the entries are defined by the data. However, in the portion of the network that is observed, the data is sparse, i.e., mostly zero-valued. Thus, the usual conflation of sparse and sparsely observed matrices leads to issues: there are n(n-1)/2 elements in the upper triangle of A that must be explicitly tracked even if they are zero. Using this representation, even moderately sized corpora cannot be held in memory on commodity hardware. Beyond memory considerations, adding approximately n(n-1)/2 explicit zeroes to a sparse matrix slows down matrix operations like matrix-vector multiplication.

This makes matrix completion algorithms infeasible in both time and space when using the naive sparse representation of A. Both AdaptiveImpute and softImpute rely on iterated singular value decompositions of a running low-rank approximation  $\tilde{A}^{(t)}$  to A. In the typical setting where the number of nodes is n, the rank of the decomposition is k, and  $n \gg k$ , naively taking a singular value decomposition of  $\tilde{A}^{(t)}$  has time complexity per iteration  $\mathcal{O}(n^2 k)$ . This high computational complexity constrains researchers to inference on networks with at most thousands of nodes.

We are able to reduce the both the time and space complexity of the matrix completion problem. The solution requires leveraging the fact that A is sparse, even if it is not sparsely observed. In particular, there is no need to explicitly track zeroes in the upper triangle of A, and A may be represented as a sparse matrix that records only non-zero elements of Aand zeroes in the lower triangle of A. Using this representation, with some algebraic tricks, all the operations necessary for AdaptiveImpute are computationally feasible. In brief, by representing  $\tilde{A}^{(t)}$  as the sum of four carefully constructed matrices, we can reduce the naive time complexity from  $\mathcal{O}(n^2 k)$  down to  $\mathcal{O}(|\tilde{\Omega}| k + n k^2)$ , where  $|\tilde{\Omega}|$  is the number of observed non-zero elements of A. In real world datasets  $|\tilde{\Omega}|$  represents the number of citations between documents, and empirical evidence suggests that each document in a citation network cites a fixed number of other documents, regardless of the overall size of the corpus. That is,  $|\tilde{\Omega}|$  is  $\mathcal{O}(n)$ . Thus the effective per-iteration runtime reduces from  $\mathcal{O}(n^2 k)$  to  $\mathcal{O}(n k^2)$ .

### 3.3 AdaptiveImpute

The AdaptiveImpute algorithm is similar to softImpute (Hastie et al., 2015), with two key differences. First, AdaptiveImpute initializes with a debiased singular value decomposition. Second, on each iteration, AdaptiveImpute adaptively varies the softImpute thresholding parameter. This procedure is defined in Algorithm 1, which is identical to the algorithm as defined in (Cho et al., 2019) but with some minor notation changes and the introduction of a maximum number of iterations T.

Algorithm 1: ADAPTIVEIMPUTE

Input: partially observed matrix  $A \in \mathbb{R}^{n \times n}$ , rank  $k \in \{2, ..., n\}$ , convergence tolerance  $\varepsilon > 0$ , and maximum allowable iterations  $T \in \mathbb{Z}^+$ . 1  $Z^{(1)} \leftarrow \text{AdaptiveInitialize}(A, k)$ 2 repeat 3  $\begin{vmatrix} \tilde{A}^{(t)} \leftarrow P_{\Omega}(A) + P_{\Omega}^{\perp}(Z^{(t)}) \\ \hat{V}_{i}^{(t)} \leftarrow \mathbf{v}_{i}(\tilde{A}^{(t)}) \text{ for } i = 1, ..., k$ 5  $\begin{vmatrix} \hat{U}_{i}^{(t)} \leftarrow \mathbf{u}_{i}(\tilde{A}^{(t)}) & \text{for } i = 1, ..., k \end{vmatrix}$ 6  $\begin{vmatrix} \tilde{\alpha}^{(t)} \leftarrow \frac{1}{n-k} \sum_{i=k+1}^{n} \lambda_{i}^{2}(\tilde{A}^{(t)}) \\ \hat{\lambda}_{i}^{(t)} \leftarrow \sqrt{\lambda_{i}^{2}(\tilde{A}^{(t)}) - \tilde{\alpha}^{(t)}} & \text{for } i = 1, ..., k \end{vmatrix}$ 8  $\begin{aligned} Z^{(t+1)} \leftarrow \sum_{i=1}^{k} \hat{\lambda}_{i}^{(t)} \hat{U}_{i}^{(t)} \hat{V}_{i}^{(t)T} \\ 9 & t \leftarrow t+1 \end{aligned}$ 10 until  $\|Z^{(t+1)} - Z^{(t)}\|_{F}^{2}/\|Z^{(t+1)}\|_{F}^{2} < \varepsilon \text{ or } t \ge T$ 11 return  $\hat{\lambda}_{i}^{(t)}, \hat{U}_{i}^{(t)}, \hat{V}_{i}^{(t)} \text{ for } i = 1, ..., k \end{aligned}$ 

The initializer is given by running Algorithm 3, which we defer to the appendix. If we compute  $Z^{(1)}$  by taking a rank k singular value decomposition of  $P_{\Omega}(A)$  and fix  $\alpha^{(t)} = \lambda$  for all t (note that  $\tilde{\alpha}^{(t)}$  is the data adaptive thresholding parameter), AdaptiveImpute reduces to softImpute. This implies that a naive implementation of AdaptiveImpute inherits the per-iteration time complexity of softImpute, which is  $\mathcal{O}(|\Omega| k + n k^2)$ , plus the cost of evaluating  $\tilde{\alpha}^{(t)}$ .

#### 3.3.1 Feasible implementation

In practice, the runtime for each iteration of AdaptiveImpute and softImpute is dominated by the singular value decomposition, which is computed using an algorithm such as the implicitly restarted Lanczos bidiagonalization algorithm. The time complexity of this decomposition depends fundamentally on an underlying bidiagonalization subroutine (Algorithm 2), and the time complexity of the bidiagonalization subroutine in turn depends on cost of left and right matrix-multiplication of  $\tilde{A}^{(t)}$  with an appropriately sized vector (Baglama and Reichel, 2005). When A is sparsely observed,  $\tilde{A}^{(t)}$  can be expressed as a sparse matrix plus a low-rank matrix

$$\tilde{A}^{(t)} = \underbrace{P_{\Omega}(A - Z^{(t)})}_{\text{sparse}} + \underbrace{Z^{(t)}}_{\text{low-rank}}, \text{ sparsely observed setting}$$

and matrix-vector multiplication has time complexity  $\mathcal{O}(|\Omega| k)$  for the sparse part and  $\mathcal{O}(n k^2)$  for the low-rank part. In the citation setting, naively re-using this decomposition in the bidiagonalization subroutine is inefficient since  $|\Omega| \approx n^2/2$ .

However, a similar trick can improve the time complexity of multiplication with  $\tilde{A}^{(t)}$ : we can drop observed zeroes from consideration if we partition  $\tilde{A}^{(t)}$  carefully. Since  $P_{\tilde{\Omega}}(A) = P_{\Omega}(A)$ , we can compute only on  $\tilde{\Omega}$ . Let  $U = \{(i, j) : i < j\}$  denote the indices of the upper triangle of A and L denote the indices of the observed elements of A on the lower triangle, such that  $\Omega = U \cup L$ . Then

$$\begin{split} \tilde{A}^{(t)} &= P_{\Omega}(A) + P_{\Omega}^{\perp}(Z^{(t)}) & \text{citation setting} \\ &= P_{\Omega}(A) - P_{\Omega}(Z^{(t)}) + P_{\Omega}(Z^{(t)}) + P_{\Omega}^{\perp}(Z^{(t)}) \\ &= P_{\tilde{\Omega}}(A) - P_{\Omega}(Z^{(t)}) + Z^{(t)} \\ &= \underbrace{P_{\tilde{\Omega}}(A)}_{\text{sparse}} - \underbrace{P_{L}(Z^{(t)})}_{\text{sparse}} - \underbrace{P_{U}(Z^{(t)})}_{\text{low-rank until projection}} + \underbrace{Z^{(t)}}_{\text{low-rank}}. \end{split}$$

Efficient implementation strategies for matrix-vector multiplications with the sparse and low-rank terms are well known. This leaves the  $P_U(Z^{(t)})$  term, which is low-rank until it is projected onto the upper triangle. There one can use the same implementation strategy as for the low-rank component, but summing over fewer indices.

**Proposition 3.1.** Let  $Z^{(t)} \in \mathbb{R}^{n \times n}$  be a rank k matrix with singular value decomposition  $Z^{(t)} = UDV^T$  and let  $x \in \mathbb{R}^n$ . Then

$$\left[P_U(Z^{(t)})\,x\right]_i = \langle U_{i\cdot}, \tilde{W}_i \rangle,$$

where  $\tilde{W}_{ki} = \sum_{j=i+1}^{n} W_{kj}$  and  $W_{j} = (DV^T)_{j} \cdot x_j$ .

We defer the proof to the appendix. Proposition 3.1 is a straightforward result that suggests a computational scheme for evaluating the term  $P_U(Z^{(t)}) x$ . In particular, it suggests constructing W, then  $\tilde{W}$ , and then obtaining elements of  $P_U(Z^{(t)}) x$  element by element. This procedure requires  $\mathcal{O}(n k^2)$  flops as opposed to the  $\mathcal{O}(n^2 k)$  flops of a naive implementation. The left-multiplication case is analogous.

The last requirement to implement AdaptiveImpute is a similarly efficient calculation of  $\alpha^{(t)}$ .

**Proposition 3.2.** Let  $\tilde{A}^{(t)}, Z^{(t)}$  and  $\alpha^{(t)}$  be as defined in Algorithm 1. Recall that  $Z^{(t)}$  is a low-rank matrix of the form  $UDV^T$  with  $U, V \in \mathbb{R}^{n \times k}$  orthonormal and  $D \in \mathbb{R}^{k \times k}$  diagonal. Then

$$\alpha^{(t)} = \frac{1}{n-k} \left[ \left\| P_{\tilde{\Omega}}(A) \right\|_{F}^{2} + \left\| Z^{(t)} \right\|_{F}^{2} - \left\| P_{L}\left( Z^{(t)} \right) \right\|_{F}^{2} - \left\| P_{U}\left( Z^{(t)} \right) \right\|_{F}^{2} - \sum_{i=1}^{k} \lambda_{i}^{2} \left( \tilde{A}^{(t)} \right) \right].$$

Additionally, define  $U^{rq} \in \mathbb{R}^n$  and  $V^{rq\Delta} \in \mathbb{R}^n$  such that

$$U_i^{rq} = U_{ir} U_{iq}, \quad and \quad V_i^{rq\triangle} = \sum_{j=i+1}^n (DV)_{rj}^T (DV)_{qj}^T \quad \forall i = 1, ..., n.$$

Then

$$\left\|P_U\left(Z^{(t)}\right)\right\|_F^2 = \sum_{r=1}^k \sum_{q=1}^k \left\langle U^{rq}, V^{rq\triangle} \right\rangle.$$

To understand the computational complexity of this expression we proceed term by term. First, consider the  $\sum_{i=1}^{k} \lambda_i^2(\tilde{A}^{(t)})$  term. Each iteration of AdaptiveImpute computes a truncated singular value decomposition of  $\tilde{A}^{(t)}$  of rank k before computing  $\alpha^{(t)}$ , so evaluating this term is a trivial  $\mathcal{O}(k)$  summation since  $\lambda_i(\tilde{A}^{(t)})$  is available for i = 1, ..., k. Next, observe that  $\|P_{\tilde{\Omega}}(A)\|_F^2$  and  $\|P_L(Z^{(t)})\|_F^2$  are collectively  $\mathcal{O}(|\tilde{\Omega}| k)$ . This leaves the terms  $\|Z^{(t)}\|_F^2$  and  $\|P_U(Z^{(t)})\|_F^2$ , both of which can require  $\mathcal{O}(n k^2)$  flops. As in Proposition 3.1, the idea is that evaluating  $\|P_U(Z^{(t)})\|_F^2$  is essentially the same evaluating  $\|Z^{(t)}\|_F^2$  case, modulo some care while indexing. The time complexity to compute  $\alpha^{(t)}$  is then  $\mathcal{O}(|\tilde{\Omega}| k + n k^2)$  flops. Using this scheme to evaluate  $\alpha^{(t)}$ , the overall time complexity of each iteration of AdaptiveImpute is  $\mathcal{O}(|\tilde{\Omega}| k + n k^2)$ .

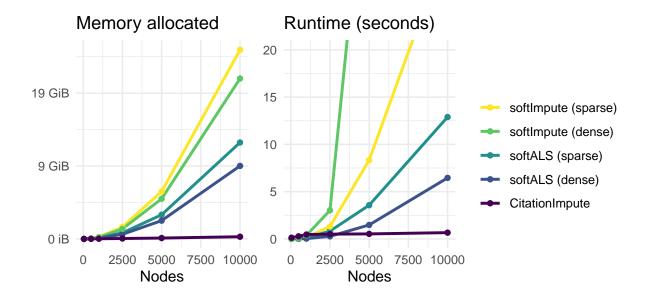



Figure 2: Comparison of memory and time complexity of CitationImpute with some existing options for low-rank matrix completion when applied our simulation test-bed model (Definition 4.2). Some run-times are truncated at 20 seconds in the right panel. Each estimator is iterative; we compare time and memory use for five iterations. Existing implementations for both sparse and dense data representations are memory bound and do not scale to networks with more than several thousand nodes. Our implementation, although un-optimized, uses less memory and is faster for large networks.

#### 3.4 Varimax rotation

After obtaining an estimated singular value decomposition  $A \approx \widehat{U}\widehat{D}\widehat{V}^T$  from AdaptiveImpute, CitationImpute varimax rotates the estimates to obtain latent factors for each node. Given an  $n \times k$  matrix orthonormal matrix U, varimax rotation finds a  $k \times k$  orthogonal matrix Rthat maximizes

$$v(R,U) = \sum_{\ell=1}^{k} \frac{1}{n} \sum_{i=1}^{n} \left( [UR]_{i\ell}^{4} - \left(\frac{1}{n} \sum_{j=1}^{n} [UR]_{j\ell}^{2}\right)^{2} \right)$$

over the set of  $k \times k$  orthonormal matrices. In particular, it compute  $\widehat{R}_U$  that maximizes  $v(\cdot, \widehat{U})$ and  $\widehat{R}_V$  that maximizes  $v(\cdot, \widehat{V})$  where  $\widehat{R}_U$  and  $\widehat{R}_V$  are  $k \times k$  orthonormal matrices. Calculating these rotation matrices is a routine operation available in many statistical packages. After the rotation matrices  $\widehat{R}_U$  and  $\widehat{R}_V$  have been found, the latent factors are estimated as

$$\widehat{Z} = \sqrt{n}\widehat{U}R_{\widehat{U}}, \quad \widehat{Y} = \sqrt{n}\widehat{V}R_{\widehat{V}}, \quad \text{and} \quad \widehat{B} = R_{\widehat{U}}^T\widehat{D}R_{\widehat{V}}/n.$$
 (3.1)

Rohe and Zeng (2023) show that, for  $\widehat{U}, \widehat{V}$  obtained from the singular value decomposition in the fully observed case, varimax rotated estimates  $\widehat{Z}, \widehat{B}$  and  $\widehat{Y}$  are consistent for population terms Z, B and Y.

### 4 Simulation study

To assess the performance of CitationImpute, we perform a simulation study using a co-stochastic blockmodel, a sub-model of the co-factor model. In the simulation study, CitationImpute recovers singular subspaces of  $\mathcal{A}$  and the latent factors Z and Y at the same rate as an oracle estimator that has access to all of A. The simulations also show that naive imputation of missing data leads to inconsistent estimates.

For the simulations, we use a Poisson degree-corrected stochastic co-blockmodel subject to lower triangular missingness.

**Definition 4.1** (Degree-corrected stochastic co-blockmodel). The *degree-corrected stochastic* co-blockmodel is random graph model on n nodes. Each node i is assigned an incoming community  $z(i) \in \{1, ..., k\}$  and an outgoing community  $y(i) \in \{1, ..., k\}$  according to parameters  $\pi^{\text{in}} \in [0, 1]^k$  and  $\pi^{\text{out}} \in [0, 1]^k$ , such that  $\mathbb{P}(z(i) = j) = \pi_j^{\text{in}}$  and  $\mathbb{P}(y(i) = j) = \pi_j^{\text{out}}$ for  $j \in \{1, ..., k\}$ . Each node i is also assigned a propensity  $\theta_i^{\text{out}} \in \mathbb{R}_+$  to send edges, and a propensity  $\theta^{\text{in}} \in \mathbb{R}_+$  to receive edges. Conditional on community memberships and edge formation propensities, integer-valued edges occur independently according to a Poisson distribution with expectation.

$$\mathbb{E}(A_{ij} \mid z(i), y(j)) = \theta_i^{\text{out}} B_{z(i), y(j)} \theta_j^{\text{in}}.$$

where  $B \in [0,1]^{k \times k}$  is a rank k mixing matrix denoting propensities of edge formation between communities. B can be rescaled by a constant to enforce that the expected density of edges in the network is  $\rho$ .

The idea behind the simulation model is to mimic the behavior we expect in citation networks, where papers in a given field will primarily cite papers from that same field (strong diagonal structure in B), but will intermittently cite papers from other fields (some active elements of B on the off-diagonal). This is motivated by the observation that the topics that Tibshirani (1996) cites and the topics that cite Tibshirani (1996) are distinct.

**Definition 4.2** (simulation model). The simulation model is a degree-corrected stochastic co-blockmodel with *n* nodes, *k* co-communities, and expected density  $\rho = 0.15$ . Let  $\pi_j^{\text{in}} = \pi_j^{\text{out}} = 1/k$  for j = 1, ..., k, such that the co-communities are balanced. Let be  $\theta^{\text{in}}$  and  $\theta^{\text{out}}$  be generated by sampling *n* independent realizations from an exponential distribution with mean eight, and then adding one to each realization, inducing some degree-heterogeneity. The diagonal elements of *B* are set to  $B_{\text{within}} = 0.8$ . *k* elements of the off-diagonal to  $B_{\text{between}} = (B_{\text{within}}/3 - (k-2) B_{\text{inactive}})$  (in particular, the off-diagonal values in the first row of *B*, and the last element of the second column of *B*). The remaining elements of the off diagonal to  $B_{\text{inactive}} = 0.01$ . This ensures that *B* is rank *k* and that there is strong assortative structure in the network. In the simulations, we use  $k \in \{3, 6, 9\}$ , with corresponding values of  $B_{\text{between}} = 0.257, 0.227, 0.197$ .

We compare the CitationImpute to an oracle estimator with access to the full data A, and also two imputation estimators. In total, we compare four estimators:

- 1. CitationImpute, with  $\ell_z = \ell_y = n/10$ ,
- 2. singular value decomposition applied after imputing all missing data as zeros (call this the *zero-imputed* estimator),
- 3. singular value decomposition applied after imputing all missing data by symmetrizing the observed data (call this the *symmetrized* estimator), and
- 4. oracle singular value decomposition applied to a fully observed similarity data (call this the *fully observed* estimator).

For the last three estimators, after estimating singular subspace, the singular vectors are varimax rotated according to (3.1) to obtain co-factor estimates.

To measure how well various estimators recover the singular subspaces of  $\mathcal{A}$ , we compute the sin  $\Theta$  distance between the subspaces spanned by U and  $\hat{U}$  (Vu and Lei, 2013; Bhatia, 1997), for identified rows only. Given two orthonormal bases  $U \in \mathbb{R}^{n \times k}$  and  $\hat{U} \in \mathbb{R}^{n \times k}$ , the singular values  $\sigma_1, ..., \sigma_k$  of  $U^T \hat{U}$  are the cosines of the principal angles  $\cos \theta_1, ..., \cos \theta_k$ between the span of U and the span of  $\hat{U}$ . Define  $\sin \Theta(U, \hat{U})$  to be a diagonal matrix containing the sine of the principle angles of  $U^T \hat{U}$ . Then the  $\sin \Theta$  distance between the subspaces spanned by U and  $\hat{U}$  is given by

$$d(U,\widehat{U}) = \|\sin\Theta(U,\widehat{U})\|_F.$$

We aggregate error across identified rows of the estimates  $\widehat{U}$  and  $\widehat{V}$  and report a single metric

$$\mathcal{L}_{\text{subspace}}(U, U, V, V) = \|\sin \Theta(U, U)\|_F + \|\sin \Theta(V, V)\|_F.$$

To measure how well the estimators recover the latent factors Z and Y, we report root mean squared error on individual elements of identified rows  $\hat{Z}$  and  $\hat{Y}$ . Since varimax estimates  $\hat{Z}$ and  $\hat{Y}$  are only determined up to sign-flips and column reordering, this requires an alignment step to match  $\hat{Z}$  with Z, and  $\hat{Y}$  with Y. Let  $\mathscr{P}(k)$  be the set of  $k \times k$  orthogonal matrices whose entries  $P_{ij}$  are elements of  $\{-1, 0, 1\}$ . Define

$$P_Z = \arg\min_{P \in \mathscr{P}(k)} \|Z - \widehat{Z}P\|_F \tag{4.1}$$

$$P_Y = \arg\min_{P \in \mathscr{P}(k)} \|Y - YP\|_F.$$
(4.2)

We find  $P_Z$  and  $P_Y$  by using the Hungarian algorithm to match columns of the estimates  $\hat{Z}, \hat{Y}$  to the corresponding population values Z, Y. Then the elementwise factor root mean squared error is

$$\mathcal{L}_{\text{factor}}(Z,\widehat{Z},Y,\widehat{Y}) = \sqrt{\frac{1}{n\,k}\left(\|Z-\widehat{Z}P_Z\|_F^2 + \|Y-\widehat{Y}P_Y\|_F^2\right)}.$$

To perform the simulation, we evaluate the subspace loss and the factor loss 200 times for every estimator, every  $k \in \{3, 6, 9\}$ , and every  $n \in \{100, 182, 331, 603, 1099, 2000\}$ . In Figure 3, we report the average subspace loss and the average factor loss for these combinations. Estimation error for CitationImpute decreases at approximately  $\sqrt{n}$ -rates, suggesting that CitationImpute is a consistent estimator of the singular subspaces of  $\mathcal{A}$  and also of the latent factors Z and Y. The rate for CitationImpute parallels that of the oracle estimator with access to all of A, although it unsurprisingly advantageous to observe the full data.

In contrast, the symmetric imputation strategy and the zero-imputation strategies are not reliable ways to estimate singular subspaces or latent factors. Estimation error for both imputation strategies is constant as a function of n, suggesting that estimators based on naive imputation approaches are inconsistent. The symmetric imputation strategy is always better than treating the unobserved entries as zeroes, which makes sense as the model has some underlying symmetry. Some additional simulation results investigating the imputation estimators are available in Appendix B.

### 5 Analysis of the statistics literature

We next leveraged CitationImpute to analyze of the academic statistics literature.

#### 5.1 Data

We used proprietary Web of Science data that we obtained through an institutional agreement with Clarivate Analytics. The complete Web of Science corpus contains hundreds of millions of documents, which amount to nearly a terabyte of data. We considered only papers published in a subset of 125 journals focused on probability and statistics (see Appendix D for a list of the journals). The node-induced subgraph formed by considering only these papers and the citations between them had 281,883 nodes, 2,224,775 edges, and 24,051 weakly connected components (a weakly connected component in a subgraph where there is a path between every pair of nodes, ignoring the direction of edges). Most of the 24,051 weakly connected

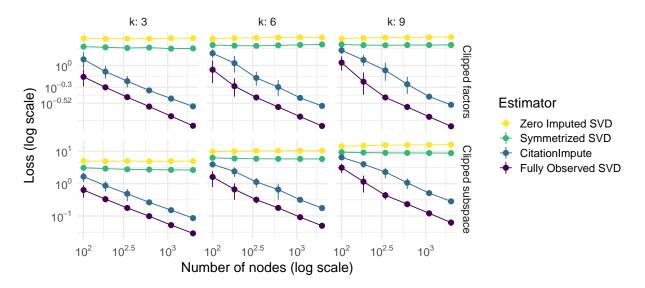



Figure 3: Average estimation error as a function of sample size, on  $\log - \log$  scale. The top row of panels visualizes estimation error of the factors Z and Y, excluding clipped factors. The bottom row of panels visualizes estimation error of the singular subspaces, again excluding clipped rows of U and V. Each column of panels represents a simulation model with a different number of latent communities. Within each panel, each line corresponds to the loss of a single estimator. Average loss plus and minus one standard deviation are shown as a dotplot; in most cases the standard deviations are too small to see.

components were singletons. The largest weakly connected component contained 255,780 nodes and 2,222,363 edges. From this point onward, when we refer to the "citation network" or "citation graph" we are referring exclusively to this largest connected component. For each document we additionally knew the authors, publication date, and the abstract text, although some of this information was missing.

Papers in the citation network were published between 1898 and 2024. The number of citations received from other papers in the largest connected component (i.e. in-degree) ranged from 0 to 4,759 and the number of citations sent to other papers in the largest connected component (i.e. out-degree) ranged from 0 to 603. There are several articles in the sample that cite hundreds of other papers; these articles are typically bibliographies or reviews. A small number of papers mutually cited each other.

### 5.2 Methods

First we constructed the partially observed adjacency matrix of the citation graph. We ordered nodes chronologically, and then clipped data using  $\ell_z = 100,000$  and  $\ell_y = 50,000$ . This amounted to discarding outgoing citations for papers published before 2004, and incoming citations for papers published after 2018. These clipping parameters were primarily selected on the basis of domain knowledge – we supposed that the topics in the modern statistics literature were present by 2004. We did not estimate incoming co-factors for papers published after 2018, because it can take several years to publish an academic paper, and we believed

papers in 2018 are the latest papers that reasonably had the chance to be discovered, cited, and included in the Web of Science dataset.

We then ran AdaptiveImpute to obtain a low-rank decomposition  $A \approx \widehat{U}\widehat{D}\widehat{V}^T$ . Here we report the results for a rank k = 30 decomposition. After computing a low-rank decomposition  $A \approx \widehat{U}\widehat{D}\widehat{V}^T$ , we performed varimax rotation of  $\widehat{U}$  and  $\widehat{V}$  to obtain a final low-rank decomposition  $A \approx \widehat{Z}\widehat{B}\widehat{Y}^T$ , as described in Section 3. The rows of  $\widehat{Z}$  and the rows of  $\widehat{Y}$  thus correspond to document-level latent co-factors (Rohe and Zeng, 2023; Rohe et al., 2016). The rows of  $\widehat{Z}$  contained outgoing-citation factors, and the rows of  $\widehat{Y}$  contained incoming-citation factors. Both  $\widehat{Z}$  and  $\widehat{Y}$  were relatively sparse. To interpret the co-factors  $\widehat{Y}$  and  $\widehat{Z}$ , we took several approaches.

First, we found keywords most associated with each factor by examining the words in paper titles following the "best features" approach of Zhang et al. (2021) and Chen (2021). We constructed a document-term matrix from the manuscript title. Letting  $X \in \mathbb{Z}^{255,780 \times 11298}$ ,  $X_{i\ell}$  indicates the number of times word  $\ell$  appears in manuscript title *i*. We restricted our analysis to words that appeared in at least five manuscript titles. Then, for each factor *j*, define the sets  $in(j) = \{i : \hat{Y}_{ij} \geq 0\}$  and  $out(j) = \{i : \hat{Y}_{ij} < 0\}$ . Then the importance of word  $\ell$  to factor *j* is

$$\mathtt{bff}(j,\ell) = \sqrt{\frac{\sum_{i \in in(j)} \widehat{Y}_{ij} X_{i\ell}}{\sum_{j \in in(i)} \widehat{Y}_{ij}}} - \sqrt{\frac{\sum_{i \in out(j)} X_{i\ell}}{|out(j)|}},$$

and in Tables 1 and 2 we report the six words most important to each factor. To complement this keyword analysis, we found the papers with the largest loadings for each dimension of  $\hat{Y}$  and  $\hat{Z}$ , which we refer to as hub papers (see Table 6 and 7 in the Appendix).

### 5.3 Results

The incoming and outgoing co-factors were interpretable and associated with meaningful statistical sub-fields. We found co-factors corresponding to statistical sub-field such as GLMM(s), GEE, multiple testing, feature selection, post-selection inference, survival analysis, MCMC, causal inference, clinical trial design, experimental design, functional data, multivariate analysis, graphical models, semiparametrics, kriging, model selection (both Bayesian and frequentist).

One particularly interesting feature of the  $\hat{Y}$  co-factors was the presence of numerous incoming dimensions related to penalized regression. These factors covered the LASSO proper (y13), optimization methods for  $L_1$  penalization (y14), non-convex penalties (y01), post-selection inference (y04), feature screening (y02), graphical models (y09) and RIDGE regression (y29). Several other incoming  $\hat{Y}$  co-factors were interesting because they corresponded to more niche statistical subfields. For example, we found incoming factors corresponding to empirical likelihood (y15), supervised dimension reduction (y11), and skew normals (y18). We suspect these co-factors emerged due to strong assortative structure in the sub-field: that is, a tendency to cite heavily within the factor while citing limited papers outside the factor. The tendency for spectral methods to find assortative clusters is widely known within spectral clustering literature, and it makes sense that they would pick up smaller but self-contained topics.

| Factor Name                        | Top words                                                        | II                        |
|------------------------------------|------------------------------------------------------------------|---------------------------|
| non-convex penalties               | selection, variable, dimensional, high, penalized, lasso         | z(                        |
| experimental design                | screening, dimensional, high, ultrahigh, feature, supersaturated | z(                        |
| bayesian spatial stats             | bayesian, models, spatial, model, longitudinal, hierarchical     | z(                        |
| post-selection inference           | high, dimensional, lasso, recurrent, selection, regression       | z(                        |
| survival analysis                  | survival, hazards, censored, cox, data, proportional             | z(                        |
| mixture models                     | selection, clustering, model, mixture, models, mixtures          | z(                        |
| causal inference                   | propensity, causal, score, treatment, missing, observational     | z(                        |
| multiple testing                   | false, discovery, testing, multiple, rate, microarray            | z(                        |
| graphical models                   | graphical, high, dimensional, models, sparse, estimation         | z(                        |
| bayesian non-parametrics           | bayesian, dirichlet, nonparametric, mixture, clustering, process | z                         |
| supervised dimension reduction     | dimension, reduction, sufficient, index, inverse, sliced         | z                         |
| times series                       | garch, volatility, series, models, time, change                  | Z                         |
| sparse multivariate analysis       | selection, lasso, high, sparse, variable, dimensional            | Z                         |
| kriging                            | spatial, spatio, temporal, gaussian, fields, bayesian            | z                         |
| empirical likelihood               | empirical, likelihood, inference, missing, partially, jackknife  | z                         |
| GEE                                | longitudinal, data, generalized, binary, estimating, clustered   | z                         |
| functional data                    | functional, data, regression, longitudinal, principal, linear    | Z                         |
| skew normals                       | skew, normal, distributions, multivariate, distribution, t       | Z                         |
| quantile regression                | quantile, regression, quantiles, censored, composite, expectile  | Z                         |
| bayesian model selection           | bayesian, selection, variable, priors, prior, model              | z                         |
| missing data                       | missing, imputation, data, longitudinal, with, nonignorable      | z                         |
| adaptive clinical trials           | adaptive, trials, clinical, sequential, designs, group           | Z                         |
| splines + random effects           | models, mixed, splines, penalized, regression, additive          | z                         |
| multivariate analysis              | high, dimensional, covariance, matrices, matrix, factor          | Z                         |
| MCMC                               | bayesian, carlo, monte, mcmc, metropolis, chain                  | z                         |
| single index models                | varying, coefficient, models, index, single, partially           | z                         |
| joint longitudinal/survival models | longitudinal, mixed, models, data, joint, effects                | Z                         |
| causal inference reviews           | causal, treatment, effects, propensity, instrumental, effect     | $\mathbf{z}_{\mathbf{z}}$ |
| RIDGE                              | ridge, regression, estimator, liu, linear, estimators            | $\mathbf{z}$              |
| cure models                        | cure, censored, survival, model, rate, data                      | Z                         |

### Table 2: Keywords for Z (outgoing citation) factors

Most of the incoming co-factors  $\widehat{Y}$  correspond closely with an outgoing co-factor  $\widehat{Z}$  on the same topic. For instance, there is an incoming survival analysis co-factor (y05) and also an outgoing survival analysis co-factor (z05). The hubs for the incoming co-factor are highly cited methods papers such as Cox (1972) and Andersen and Gill (1982). The hubs for the outgoing co-factor are review papers that cite many of these works while reviewing few citations themselves, such as Guo and Zeng (2014) and Kalbfleisch and Schaubel (2023). To investigate correspondences between  $\widehat{Y}$  and  $\widehat{Z}$  factors, we plotted the mixing matrix  $\widehat{B}$  in the left panel of Figure 4.

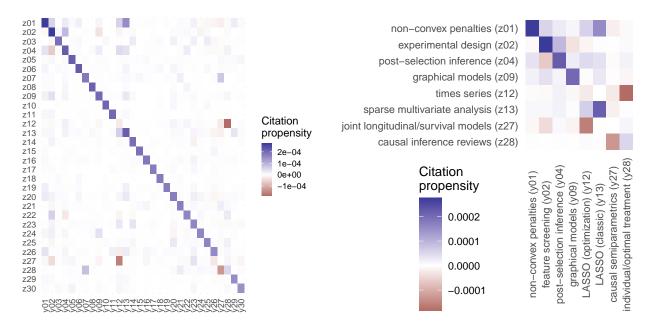



Figure 4: Left: The varimax estimate  $\widehat{B}$ . Each entry  $\widehat{B}_{ij}$  denotes the estimated citation propensity from papers loading on  $i^{th}$  outgoing co-factor  $Z_{\cdot i}$  to the  $j^{th}$  incoming co-factor  $Y_{\cdot j}$ . Right: A labelled sub-matrix of  $\widehat{B}$  considering the co-factors exhibiting off-diagonal structure.

We found several  $\widehat{Z}$  factors that did not correspond closely with any incoming  $\widehat{Y}$  factor. For instance, z12 is a co-factor describing propensity to cite papers on times series analysis, while y12 is a co-factor related to the LASSO and optimization. Similarly, z27, a co-factor about joint longitudinal models, and z28, a causal inference co-factor, did not exhibit topical correspondence with y27, on causal semiparametrics, and y28, on individualized treatment rules. We visualized the relationships between the unmatched factors in the right panel of Figure 4, where it is clear that some co-factors are not in one-to-one correspondence with one another.

One question was how to interpret co-factors exhibiting one-to-one incoming-to-outgoing correspondence. For example, what was the difference between the outgoing survival analysis factor (z10) and the incoming survival analysis factor (y10)? To answer this question, we looked at the hub papers for each co-factor. For the survival analysis factor, for example, the top incoming hub was Cox (1972), which introduced the proportional hazards model, and the top outgoing hub was Guo and Zeng (2014), a survey of semiparametric models in survival analysis. Incoming  $\hat{Y}$  hub papers were typically highly cited, important papers in each sub-field. In contrast, the outgoing  $\widehat{Z}$  hub papers were typically review articles, retrospectives, tutorials, and papers with good literature reviews that summarized the past literature. Put differently, statistical papers tended to either: (1) perform important synthesis of past work but be cited very little, (2) cite a limited number of papers while receiving many citations, or (3) cite and be cited very little.

This distinct behavior from the  $\widehat{Y}$  paper hubs and  $\widehat{Z}$  paper hubs is evidence of co-factor structure in the statistics literature, and more broadly, evidence that papers do indeed cite and get cited in fundamentally different ways.

#### 5.4 Sensitivity to choice of rank and clipping parameters

We repeated our analysis for  $k \in \{5, 10, 20, 30, 40\}$ , holding  $\ell_z = 100,000$  and  $\ell_y = 50,000$  fixed. Factor keywords, hubs, and mixing matrices for these analyses can be found in the supplemental material. We obtained qualitatively consistent results across values of k, and found that the co-factors can be coherently interpreted at all values of k that we explored. In practice, increasing k revealed additional, finer-grain factor structure. We chose to analyze k = 30 co-factors because those co-factors revealed rich structure in the statistics literature while remaining interpretable and digestible.

We additionally explored  $\ell_z = \ell_y \in \{1, 25000, 50000, 70000\}$ , holding k = 30. Factors keywords, hubs, and mixing matrices for these analyses can also be found in the supplemental material. We found that the Y keywords, the Y factor hubs, and the Z factor hubs remained fairly stable across choices of  $\ell_z$  and  $\ell_y$ . However, Z keywords and factor identities were more varied, and mixing matrices  $\hat{B}$  also exhibited substantial variation. At low clipping parameters,  $\hat{B}$  exhibited substantial off-diagonal structure. As the clipping parameters increased,  $\hat{B}$  became more and more diagonal. The results for  $\ell_z = 100,000$  and  $\ell_y = 50,000$ had the least off-diagonal structure in  $\hat{B}$ .

Altogether, the sensitivity analysis for the clipping parameters indicated that  $\widehat{B}$ , and to a lesser extent, the outgoing co-factors Z, were somewhat unstable across hyperparameter values. Ultimately, our choice of  $\ell_z = 100,000$  and  $\ell_y = 50,000$  was based on domain knowledge: we assumed that it would take until 2004 for all outgoing co-topics to appear in the statistical literature, and that papers published after 2018 would not have the chance to be cited by papers from each incoming co-topic, due to the lengthy academic publication process. Regardless, since we do not definitely know how to select  $\ell_z$  and  $\ell_y$ , results should be treated as somewhat tentative.

#### 5.5 How the past would cite the future

One of the interesting features of our missing data framework is that it allows us to impute latent similarities from older documents to newer documents, or, with conceptual abuse, citations forward in time. In particular, if a paper *i* was published before paper *j*, we can estimate the latent similarity from paper *i* to paper *j* via the real-valued imputation  $\widehat{A}_{ij} \approx \widehat{Z}_{i} \cdot \widehat{B} \cdot \widehat{Y}_{j}^{T}$ . We suggest interpreting these imputed similarities as you would interpret probability estimates from a linear probability model; as in the linear probability model, we have no guarantee that  $\widehat{A}_{ij} \in [0, 1]$ , such that  $\widehat{A}_{ij}$  represents a valid probability of "citation". However, we can still think of  $\hat{A}_{ij}$  as indicative of probability of citation, had citation been possible.

In particular, for each paper, we calculated all of these imputed similarities from prior papers. Summing over these imputations, we obtained an estimate of the number of times papers from the past would have cited papers from the future on the basis of topical similarity, were they so able. We computed these estimates for each of the papers in our citation network and report the 15 papers with the highest imputed in-degree in Table 3 and the 15 papers with highest imputed out-degree in Table 4. Most of the papers with high imputed in-degree are related to feature screening, the graphical LASSO, or some form of high dimensional regression. Most of the papers with high imputed out-degree are review articles published in Biometrika.

Table 3: Imputed incoming citations (identified edges only)

| Title                                                                                        | Imputed | Cited by |
|----------------------------------------------------------------------------------------------|---------|----------|
| On asymptotically optimal confidence regions and tests for high-dimensional models (2014)    | 1632    | 360      |
| Confidence intervals for low dimensional parameters in high dimensional linear models (2014) | 1564    | 350      |
| Sure independence screening for ultrahigh dimensional feature space (2008)                   | 1387    | 905      |
| Estimating individualized treatment rules using outcome weighted learning (2012)             | 1215    | 280      |
| Regularization paths for generalized linear models via coordinate descent (2010)             | 1135    | 1124     |
| Feature screening via distance correlation learning (2012)                                   | 1094    | 327      |
| A robust method for estimating optimal treatment regimes (2012)                              | 1014    | 210      |
| Model-free feature screening for ultrahigh-dimensional data (2011)                           | 871     | 246      |
| Sure independence screening in generalized linear models with np-dimensionality (2010)       | 847     | 305      |
| Double/debiased machine learning for treatment and structural parameters (2018)              | 831     | 222      |
| Nonparametric independence screening in sparse ultra-high-dimensional additive models (2011) | 812     | 262      |
| Exact post-selection inference, with application to the lasso (2016)                         | 757     | 188      |
| Performance guarantees for individualized treatment rules (2011)                             | 753     | 219      |
| Simultaneous analysis of lasso and dantzig selector (2009)                                   | 728     | 617      |
| Sparse inverse covariance estimation with the graphical lasso (2008)                         | 717     | 754      |

### Table 4: Imputed outgoing citations (identified edges only)

| Title                                                                                                          | Imputed | Cites |
|----------------------------------------------------------------------------------------------------------------|---------|-------|
| Bayesian statistics in medicine: a 25 year review (2006)                                                       | 754     | 511   |
| Joint modeling of longitudinal and time-to-event data: an overview (2004)                                      | 172     | 36    |
| Joint longitudinal-survival-cure models and their application to prostate cancer (2004)                        | 165     | 34    |
| Methodological issues with adaptation of clinical trial design (2006)                                          | 155     | 41    |
| Adaptive statistical analysis following sample size modification based on interim review of effect size (2005) | 143     | 26    |
| Semiparametric regression during 2003-2007 (2009)                                                              | 137     | 219   |
| A 25-year review of sequential methodology in clinical studies (2007)                                          | 135     | 85    |
| Group sequential and adaptive designs - a review of basic concepts and points of discussion (2008)             | 134     | 76    |
| Maximum likelihood estimation in semiparametric regression models with censored data (2007)                    | 131     | 53    |
| Adaptive seamless designs: selection and prospective testing of hypotheses (2007)                              | 128     | 61    |
| A regulatory view on adaptive/flexible clinical trial design (2006)                                            | 128     | 30    |
| An overview of statistical approaches for adaptive designs and design modifications (2006)                     | 124     | 35    |
| An investigation of two-stage tests (2006)                                                                     | 122     | 30    |
| Efficient group sequential designs when there are several effect sizes under consideration (2006)              | 122     | 28    |
| Joint modeling of longitudinal and survival data via a common frailty (2004)                                   | 118     | 21    |

## 6 Discussion

We proposed a new method to co-factor documents in citation networks. The method is motivated by the observation that factors should be based on similarity measurements, and citations are only partially observed similarity measurements. Factoring a partially observed network complicated standard spectral clustering procedures and required use of matrix completion methods to estimate singular subspaces of the graph adjacency matrix. Here we found computational difficulties due to the precise observation pattern of citation data, which we resolved via a careful new implementation of the AdaptiveImpute algorithm. Because of dependence in the observation mechanism in the citation setting, existing theoretical results for AdaptiveImpute, and nuclear norm minimization more generally, were not applicable, and we validated our approach to matrix completion via a simulation study.

Our work suggests several avenues for methodological and theoretical exploration. Methodologically, it may be interesting to propose computationally efficient estimation procedures for other matrix completion methods in the upper triangular observation setting, or more generally in settings where sparse data is densely observed. Methods designed for independent but general sampling distributions, such as weighted nuclear norm minimization, may perform particularly well in the citation setting. Alternatively, further computational improvements would allow for larger scale bibliometric exploration of scientific citation networks. Current bibliometric databases contain hundreds of millions of papers and billions of references, more data than our method can handle. While our analysis of the statistics literature is one of the most extensive to date, incorporating additional papers could illuminate the relationships between statistical methodology and scientific practice at large. Another open question is how to extend our approach to the tensor, or multi-layer, citation network case, which would be appropriate for data like U.S. Court Opinions, where there are several distinct and explicitly labelled types of citation that documents may use when referencing each other. Finally, it may be of significant practical use to develop a better theoretical understanding of how matrix completion methods perform in settings with dependent observation mechanisms.

## Acknowledgements

We thank Steve Meyer at UW-Madison Libraries for assistance with the Web of Science dataset; Keith Levin, Vivak Patel and several anonymous reviewers for feedback on this manuscript; Yunyi Shen for a code contribution; and Alexander Tahk, Ben Bolker, Mark Padgham, Noam Ross, Max Kuhn, Dan Simpson, Sam Power, Patrick Girardet, and Cannon Lewis for generative discussions throughout the course of the project.

# 7 Replication package

We implemented a proof-of-concept implementation of the AdaptiveImpute estimator specialized to the citation setting in the fastadi R package, which is available on CRAN and at https://github.com/RoheLab/fastadi.

Code to reproduce the simulations and performance comparison is available at https://github.com/alexpghayes/citation-cofactoring-replication/. Due to licensing agree-

ments, we cannot publish the Web of Science data. Nonetheless, the replication package contains the code we used to analyze the Web of Science data.

## References

- Airoldi, E. M., D. M. Blei, S. E. Fienberg, and E. P. Xing (2008). Mixed Membership Stochastic Blockmodels. *Journal of Machine Learning Research* 9, 1981–2014.
- Andersen, P. K. and R. D. Gill (1982). Cox's Regression Model for Counting Processes: A Large Sample Study. *The Annals of Statistics* 10(4), 1100–1120.
- Athreya, A., D. E. Fishkind, M. Tang, C. E. Priebe, Y. Park, J. T. Vogelstein, K. Levin, V. Lyzinski, Y. Qin, and D. L. Sussman (2018). Statistical Inference on Random Dot Product Graphs: A Survey. *Journal of Machine Learning Research* 18, 1–92.
- Athreya, A., C. E. Priebe, M. Tang, V. Lyzinski, D. J. Marchette, and D. L. Sussman (2015). A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs. Sankhya A: The Indian Journal of Statistics 78(1), 1–18.
- Baglama, J. and L. Reichel (2005). Augmented Implicitly Restarted Lanczos Bidiagonalization Methods. SIAM Journal on Scientific Computing 27(1), 19–42.
- Bhatia, R. (1997). Matrix Analysis. Springer.
- Bhojanapalli, S. and P. Jain (2014). Universal Matrix Completion. In Proceedings of the 31st International Conference on Machine Learning.
- Blei, D. M., A. Y. Ng, and M. I. Jordan (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993–1022.
- Chanpuriya, S., C. E. Tsourakakis, C. Musco, and K. Sotiropoulos (2020). Node Embeddings and Exact Low-Rank Representations of Complex Networks. In 34th Conference on Neural Information Processing Systems, Vancouver, Canada.
- Chen, F. (2021). Spectral Methods for Social Media Data Analysis. Ph. D. thesis, University of Wisconsin-Madison.
- Chen, Y., A. Jalali, S. Sanghavi, and H. Xu (2014). Clustering Partially Observed Graphs via Convex Optimization. *Journal of Machine Learning Research* 15, 2213–2238.
- Cho, J., D. Kim, and K. Rohe (2019). Intelligent Initialization and Adaptive Thresholding for Iterative Matrix Completion: Some Statistical and Algorithmic Theory for Adaptive-Impute. Journal of Computational and Graphical Statistics 28(2), 323–333.
- Choi, D. (2017). Co-clustering of nonsmooth graphons. *The Annals of Statistics* 45(No. 4), 1488–1515.
- Choi, D. and P. J. Wolfe (2014). Co-clustering separately exchangeable network data. *The* Annals of Statistics 42(1), 29–63.

- Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society: Series B (Methodological) 34(2), 187–202.
- Cui, Z., D. Zhang, K. Wang, H. Zhang, N. Li, and W. Zuo (2015). Weighted Nuclear Norm Minimization Based Tongue Specular Reflection Removal. *Mathematical Problems in Engineering 2015*, 1–15.
- Drineas, P. and M. W. Mahoney (2005). On the Nystrom Method for Approximating a Gram Matrix for Improved Kernel-Based Learning. *Journal of Machine Learning Research* 6, 2153–2175.
- Foucart, S., D. Needell, R. Pathak, Y. Plan, and M. Wootters (2021). Weighted Matrix Completion From Non-Random, Non-Uniform Sampling Patterns. *IEEE Transactions on Information Theory* 67(2), 1264–1290.
- Gerlach, M., T. P. Peixoto, and E. G. Altmann (2018). A network approach to topic models. Science Advances 4(7), 1–11.
- Gittens, A. and M. W. Mahoney (2016). Revisiting the Nystrom Method for Improved Large-scale Machine Learning. *Journal of Machine Learning Research* 17, 1–65.
- Gu, S., Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang (2017). Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision. International Journal of Computer Vision 121(2), 183–208.
- Gu, S., L. Zhang, W. Zuo, and X. Feng (2014). Weighted Nuclear Norm Minimization with Application to Image Denoising. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, pp. 2862–2869. IEEE.
- Guo, S. and D. Zeng (2014). An overview of semiparametric models in survival analysis. Journal of Statistical Planning and Inference 151–152, 1–16.
- Hajek, B. and S. Sankagiri (2019). Community Recovery in a Preferential Attachment Graph. *IEEE Transactions on Information Theory* 65(11), 6853–6874.
- Hastie, T., R. Mazumder, J. D. Lee, and R. Zadeh (2015). Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares. *Journal of Machine Learning Research* 16, 3367–3402.
- Hoerl, A. E. and R. W. Kennard (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. *Technometrics* 12(1), 55–67.
- Holland, P. W., K. B. Laskey, and S. Leinhardt (1983). Stochastic blockmodels: First steps. Social Networks 5(2), 109–137.
- Hosono, K., S. Ono, and T. Miyata (2016). Weighted tensor nuclear norm minimization for color image denoising. In 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, pp. 3081–3085. IEEE.

- Ji, P. and J. Jin (2016). Coauthorship and citation networks for statisticians. The Annals of Applied Statistics 10(4), 1779–1812.
- Ji, P., J. Jin, Z. T. Ke, and W. Li (2022). Co-citation and Co-authorship Networks of Statisticians. *Journal of Business & Economic Statistics* 40(2), 469–485.
- Jin, J. (2015). Fast community detection by SCORE. The Annals of Statistics 43(1), 57–89.
- Jin, J., Z. T. Ke, and S. Luo (2024). Mixed membership estimation for social networks. Journal of Econometrics 239(2), 105369.
- Kalbfleisch, J. D. and D. E. Schaubel (2023). Fifty Years of the Cox Model. Annual Review of Statistics and Its Application 10 (Volume 10, 2023), 1–23.
- Karrer, B. and M. E. J. Newman (2011). Stochastic blockmodels and community structure in networks. *Physical Review E* 83(1), 016107.
- Kim, Y.-D. and S. Choi (2013). Variational Bayesian View of Weighted Trace Norm Regularization for Matrix Factorization. *IEEE Signal Processing Letters* 20(3), 261–264.
- Klopp, O. (2014). Noisy low-rank matrix completion with general sampling distribution. *Bernoulli* 20(1), 282–303.
- Larremore, D. B., A. Clauset, and A. Z. Jacobs (2014). Efficiently inferring community structure in bipartite networks. *Physical Review E* 90(1), 012805.
- Lei, J. and A. Rinaldo (2015). Consistency of spectral clustering in stochastic block models. The Annals of Statistics 43(1), 215–237.
- Li, T., E. Levina, and J. Zhu (2020). Network cross-validation by edge sampling. Biometrika 107(2), 257–276.
- Lyzinski, V., D. L. Sussman, M. Tang, A. Athreya, and C. E. Priebe (2014). Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding. *Electronic Journal of Statistics* 8(2), 2905–2922.
- Lyzinski, V., M. Tang, A. Athreya, Y. Park, and C. E. Priebe (2017). Community Detection and Classification in Hierarchical Stochastic Blockmodels. *IEEE Transactions on Network Science and Engineering* 4(1), 13–26.
- Mazumder, R., T. Hastie, and R. Tibshirani (2010). Spectral Regularization Algorithms for Learning Large Incomplete Matrices. *Journal of Machine Learning Research* 11, 2287–2322.
- Mitzenmacher, M. and E. Upfal (2017). *Probability and Computing* (Second edition ed.). Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press.
- Peixoto, T. P. (2018). Reconstructing Networks with Unknown and Heterogeneous Errors. *Physical Review X* 8(4), 041011.

- Pollner, P., G. Palla, and T. Vicsek (2006). Preferential attachment of communities: The same principle, but a higher level. *Europhysics Letters (EPL)* 73(3), 478–484.
- Price, D. D. S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science 27(5), 292–306.
- Priebe, C. E., Y. Park, J. T. Vogelstein, J. M. Conroy, V. Lyzinski, M. Tang, A. Athreya, J. Cape, and E. Bridgeford (2019). On a two-truths phenomenon in spectral graph clustering. *Proceedings of the National Academy of Sciences* 116(13), 5995–6000.
- Qing, H. and J. Wang (2022). Directed mixed membership stochastic blockmodel. arXiv:2101.02307.
- Razaee, Z. S., A. A. Amini, and J. J. Li (2019). Matched Bipartite Block Model with Covariates. *Journal of Machine Learning Research* 20, 1–44.
- Rohe, K., T. Qin, and B. Yu (2016). Co-clustering directed graphs to discover asymmetries and directional communities. *Proceedings of the National Academy of Sciences* 113(45), 12679–12684.
- Rohe, K. and M. Zeng (2023). Vintage factor analysis with Varimax performs statistical inference. Journal of the Royal Statistical Society Series B: Statistical Methodology 85(4), 1037–1060.
- Selby, D. A. (2020). Statistical Modelling of Citation Networks, Research Influence and Journal Prestige. Ph. D. thesis, University of Warwick.
- Shamir, O. and S. Shalev-Shwartz (2014). Matrix Completion with the Trace Norm: Learning, Bounding, and Transducing. Journal of Machine Learning Research 15, 3401–3423.
- Stigler, S. M. (1994). Citation Patterns in the Journals of Statistics and Probability. *Statistical Science* 9(1).
- Tian, Y. (2004). More on maximal and minimal ranks of Schur complements with applications. Applied Mathematics and Computation 152(3), 675–692.
- Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58(1), 267–288.
- Vinayak, R. K., S. Oymak, and B. Hassibi (2014). Graph Clustering With Missing Data : Convex Algorithms and Analysis. In *Advances in Neural Information Processing Systems*.
- von Luxburg, U. (2007). A tutorial on spectral clustering. *Statistics and Computing* 17(4), 395–416.
- Vu, V. Q. and J. Lei (2013). Minimax sparse principal subspace estimation in high dimensions. The Annals of Statistics 41(6), 2905–2947.
- Yang, M., Y. Li, and J. Wang (2022). Feature and Nuclear Norm Minimization for Matrix Completion. IEEE Transactions on Knowledge and Data Engineering 34(5), 2190–2199.

- Yen, T.-C. and D. B. Larremore (2020). Community detection in bipartite networks with stochastic block models. *Physical Review E* 102(3), 032309.
- Zhang, X. and M. K. Ng (2019). A Corrected Tensor Nuclear Norm Minimization Method for Noisy Low-Rank Tensor Completion. SIAM Journal on Imaging Sciences 12(2), 1231–1273.
- Zhang, Y., F. Chen, and K. Rohe (2021). Social Media Public Opinion as Flocks in a Murmuration: Conceptualizing and Measuring Opinion Expression on Social Media. *Journal of Computer-Mediated Communication* 27(1), zmab021.
- Zhao, J., M. Sun, F. Chen, and P. Chiu (2022). Understanding Missing Links in Bipartite Networks With MissBiN. *IEEE Transactions on Visualization and Computer Graphics* 28(6), 2457–2469.
- Zhu, Z., T. Wang, and R. J. Samworth (2022). High-Dimensional Principal Component Analysis with Heterogeneous Missingness. *Journal of the Royal Statistical Society Series* B: Statistical Methodology 84(5), 2000–2031.

# A AdaptiveInitialize and Lanczos Bidiagonalization

For convenience, we report the algorithmic details of the Lanczos Bidiagonalization and AdaptiveInitialize sub-routines.

| Algorithm 2: Lanczos Bidiagonalization                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------|
| <b>Input:</b> matrix $A \in \mathbb{R}^{\ell \times n}$ or functions for evaluating matrix-vector products with the        |
| matrices A and $A^T$ , initial vector of unit length $p_1 \in \mathbb{R}^n$ , number of                                    |
| bidiagonalization steps $m$                                                                                                |
| $1 \ P_1 \leftarrow p_1; \ q_1 \leftarrow Ap_1$                                                                            |
| $2 \ \alpha_1 \leftarrow \ q_1\ ,  q_1 \leftarrow q_1/\alpha_1,  Q_1 \leftarrow q_1$                                       |
| 3 for $j = 1$ to m do                                                                                                      |
| $4  r_j \leftarrow A^T q_1 - \alpha_j p_j$                                                                                 |
| 5 <b>if</b> $j < m$ then                                                                                                   |
| $6 \qquad \qquad \beta_j \leftarrow \ r_j\ ,  p_{j+1} \leftarrow r_j/\beta_j,  P_{j+1} \leftarrow [P_j, p_{j+1}]$          |
| $7     q_{j+1} \leftarrow Ap_{j+1} - \beta_j q_j$                                                                          |
| <b>8</b> $\alpha_{j+1} \leftarrow   q_{j+1}  , q_{j+1} \leftarrow q_{j+1}/\alpha_{j+1}, Q_{j+1} \leftarrow [Q_j, q_{j+1}]$ |
| 9 $\left[ \begin{array}{c} B_{j,j+1} \leftarrow \beta_j \end{array} \right]$                                               |
| 10 $\begin{bmatrix} B_{jj} \leftarrow \alpha_j \end{bmatrix}$                                                              |
| 11 return $P_m, Q_m, B_m, r_m$                                                                                             |
|                                                                                                                            |

AdaptiveInitialize is computes an initial estimate for a low-rank decomposition, and was originally reported in Cho et al. (2019). We have made minor notational changes for greater clarity.

Note that the left and right singular vectors estimates are initialized separately in AdaptiveInitialize, and  $\hat{s}_i \in \{-1, 1\}$  can be used to ensure sign consistency between the singular vector pairs.

## **B** Additional simulation results

Here, we investigate what happens if one of the naive imputation approaches is correct. We consider two symmetric variants of the simulation model. In the first variant, we symmetrize  $\mathbb{E}[\mathcal{A} \mid Z, B, Y]$  by using the asymmetric model from Section 4 and setting  $B = (B + B^T)/2$  and  $\theta^{\text{in}} = \theta^{\text{out}}$ . This yields a directed stochastic blockmodel that is symmetric *in expectation*. We then repeat the simulation study of Section 4 and report the results in Figure 5. In this case, the symmetric imputation strategy is insufficient to estimate Z and Y, despite the symmetry in the conditional expectation of  $\mathcal{A}$ .

Then, we consider a genuinely symmetric generative model, by sampling the upper half of a directed stochastic co-blockmodel, and then setting  $A_{ij} = A_{ji}$  for all  $i, j \in [n]$ . Results Algorithm 3: ADAPTIVEINITIALIZE

Input: partially observed matrix  $A \in \mathbb{R}^{n \times n}$ , desired rank  $k \in \{2, ..., n\}$  $\hat{p} \leftarrow |\Omega_A| / n^2$  $\Sigma_V \leftarrow A^T A - (1 - \hat{p}) \operatorname{diag} (A^T A)$  $\Sigma_U \leftarrow A A^T - (1 - \hat{p}) \operatorname{diag} (A A^T)$  $\hat{V}_i \leftarrow \mathbf{v}_i (\Sigma_V)$  for i = 1, ..., k $\hat{U}_i \leftarrow \mathbf{u}_i (\Sigma_U)$  for i = 1, ..., k $\tilde{\alpha} \leftarrow \frac{1}{n-k} \sum_{i=k+1}^n \lambda_i (\Sigma_V)$  $\hat{\lambda}_i \leftarrow \frac{1}{\hat{p}} \sqrt{\lambda_i (\Sigma_V) - \tilde{\alpha}}$  for i = 1, ..., k $\hat{s}_i \leftarrow \operatorname{sign} \left( \langle \hat{V}_i, \mathbf{v}_i(A) \rangle \right) \cdot \operatorname{sign} \left( \langle \hat{U}_i, \mathbf{u}_i(A) \rangle \right)$  for i = 1, ..., k9 return  $\hat{s}_i, \hat{\lambda}_i, \hat{U}_i, \hat{V}_i$  for i = 1, ..., k

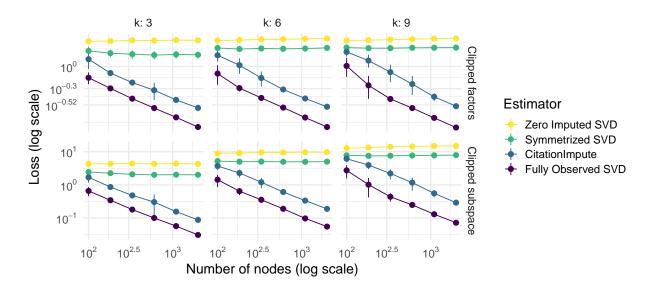



Figure 5: Average estimation error as a function of sample size, on  $\log - \log$  scale. The top row of panels visualizes estimation error of the factors Z and Y, excluding clipped factors. The bottom row of panels visualizes estimation error of the singular subspaces, again excluding clipped rows of U and V. Each column of panels represents a simulation model with a different number of latent communities. Within each panel, each line corresponds to the loss of a single estimator. Average loss plus and minus one standard deviation are shown as a dotplot; in most cases the standard deviations are too small to see.

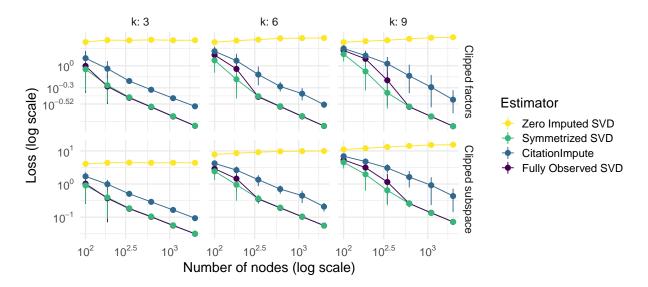



Figure 6: Average estimation error as a function of sample size, on  $\log - \log$  scale. The top row of panels visualizes estimation error of the factors Z and Y, excluding clipped factors. The bottom row of panels visualizes estimation error of the singular subspaces, again excluding clipped rows of U and V. Each column of panels represents a simulation model with a different number of latent communities. Within each panel, each line corresponds to the loss of a single estimator. Average loss plus and minus one standard deviation are shown as a dotplot; in most cases the standard deviations are too small to see.

for this model are visualized in Figure 6. For truly symmetric A, the symmetrized SVD estimator achieves the same performance as the oracle estimator with access to all of A. CitationImpute continues to achieve the same rate as the oracle and symmetrized estimators in this setting, although with some performance penalty.

### C Proofs

### C.1 Proof of Proposition 2.1

Proof. Let  $P_U^{-1}(\mathcal{A})$  be the pre-image of  $\mathcal{A}$  under  $P_U$ , which must contain at least one element, and let  $\mathcal{C}$  be an arbitrary element of  $P_U^{-1}(\mathcal{A})$ . Consider a decomposition of  $\mathcal{C}$  as in Figure 1. let  $i, j \in \mathbb{Z}$  satisfying  $1 < i \leq (n - \ell_z)$  and  $\ell_y < j \leq n$ . That is, i and j index an element of  $\mathcal{C}$  that is sent to zero by  $P_U$  but that we wish to recover. Put  $x \equiv \mathcal{C}_{ij}$ . By hypothesis  $M = \mathcal{C}_{[1:\ell_z,(n-\ell_y):n]}$ . Let  $M^-$  be an arbitrary generalized inverse of M. From equation (1.5) of Tian (2004) it follows that

$$\operatorname{rank}(x - vM^{-}u) \le \operatorname{rank}\begin{pmatrix} \begin{bmatrix} u & M \\ x & v \end{bmatrix} - \operatorname{rank}(M) = k - k = 0,$$

and thus that  $x = vM^{-}u$ . That is, any pre-image of  $\mathcal{A}$  is uniquely specified at indexes  $i, j \in \mathbb{Z}$  satisfying  $1 < i \leq (n - \ell_z)$  and  $\ell_y < j \leq n$ , as desired.

### C.2 Proof of Proposition 2.2

*Proof.* In order to show that M has rank k, it is sufficient to show that the first  $\ell_z$  nodes are collectively members of all k outgoing blocks, and the last  $\ell_y$  nodes are collectively members of all k incoming blocks.

The problem thus reduces to the well-known coupon collector's problem. The probability of sampling k out of k distinct and equiprobable items given a sample of size  $2k \log k$  is  $1 - n^{-1}$  (Mitzenmacher and Upfal, 2017, p125-126). We first use this bound for the incoming Y blocks and then again for the outgoing Z blocks, and combine them with a union bound to complete the proof.

### C.3 Proof of Proposition 3.1

Proof.

$$(P_U(Z_t) x)_i = \sum_{j=1}^n Z_{ij} \cdot \mathbf{1}(i < j) \cdot x_j$$
  

$$= \sum_{j=1}^n \left( \sum_{r=1}^k U_{ir} (DV^T)_{rj} \right) \cdot x_j \cdot \mathbf{1}(i < j)$$
  

$$= \sum_{r=1}^k U_{ir} \sum_{j=1}^n (DV^T)_{rj} \cdot x_j \cdot \mathbf{1}(i < j)$$
  

$$= \sum_{r=1}^k U_{ir} \sum_{j=1}^n W_{rj} \cdot \mathbf{1}(i < j)$$
  

$$= \sum_{r=1}^k U_{ir} \sum_{j=i+1}^n W_{rj}$$
  

$$= \sum_{r=1}^k U_{ir} \tilde{W}_{ri}$$
  

$$= \langle U_{i\cdot}, \tilde{W}_i \rangle$$

# C.4 Proof of Proposition 3.2

*Proof.* First observe that

$$\begin{aligned} \alpha^{(t)} &= \frac{1}{n-k} \sum_{i=k+1}^{n} \boldsymbol{\lambda}_{i}^{2} \left( \tilde{A}^{(t)} \right) \\ &= \frac{1}{n-k} \left[ \sum_{i=1}^{n} \boldsymbol{\lambda}_{i}^{2} \left( \tilde{A}^{(t)} \right) - \sum_{i=1}^{k} \boldsymbol{\lambda}_{i}^{2} \left( \tilde{A}^{(t)} \right) \right] \\ &= \frac{1}{n-k} \left[ \left\| \tilde{A}^{(t)} \right\|_{F}^{2} - \sum_{i=1}^{k} \boldsymbol{\lambda}_{i}^{2} \left( \tilde{A}^{(t)} \right) \right]. \end{aligned}$$

Further

$$\begin{split} \left\| \tilde{A}^{(t)} \right\|_{F}^{2} &= \left\| P_{\Omega}(A) + P_{\Omega}^{\perp} \left( Z^{(t)} \right) \right\|_{F}^{2} \\ &= \left\| P_{\tilde{\Omega}}(A) \right\|_{F}^{2} + \left\| P_{\Omega}^{\perp} \left( Z^{(t)} \right) \right\|_{F}^{2} \\ &= \left\| P_{\tilde{\Omega}}(A) \right\|_{F}^{2} + \left\| Z^{(t)} \right\|_{F}^{2} - \left\| P_{\Omega} \left( Z^{(t)} \right) \right\|_{F}^{2} \\ &= \left\| P_{\tilde{\Omega}}(A) \right\|_{F}^{2} + \left\| Z^{(t)} \right\|_{F}^{2} - \left\| P_{L} \left( Z^{(t)} \right) \right\|_{F}^{2} - \left\| P_{U} \left( Z^{(t)} \right) \right\|_{F}^{2}. \end{split}$$

Finally,

$$\begin{split} \left\| P_{U} \left( Z^{(t)} \right) \right\|_{F}^{2} &= \sum_{i=1}^{n} \sum_{j=1}^{n} \left\langle U_{i}, DV_{j}^{T} \right\rangle^{2} \mathbf{1} (i < j) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \left( \sum_{r=1}^{k} U_{ir} (DV)_{rj}^{T} \right)^{2} \mathbf{1} (i < j) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} \left( \sum_{r=1}^{k} \sum_{q=1}^{k} U_{ir} (DV)_{rj}^{T} U_{iq} (DV)_{qj}^{T} \right) \mathbf{1} (i < j) \\ &= \sum_{r=1}^{k} \sum_{q=1}^{k} \left( \sum_{i=1}^{n} \sum_{j=1}^{n} U_{ir} (DV)_{rj}^{T} U_{iq} (DV)_{qj}^{T} \right) \mathbf{1} (i < j) \\ &= \sum_{r=1}^{k} \sum_{q=1}^{k} \left( \sum_{i=1}^{n} U_{ir} U_{iq} \sum_{j=1}^{n} (DV)_{rj}^{T} (DV)_{qj}^{T} \right) \mathbf{1} (i < j) \\ &= \sum_{r=1}^{k} \sum_{q=1}^{k} \left( \sum_{i=1}^{n} U_{ir} U_{iq} \sum_{j=i+1}^{n} (DV)_{rj}^{T} (DV)_{qj}^{T} \right) \\ &= \sum_{r=1}^{k} \sum_{q=1}^{k} \left( \sum_{i=1}^{n} U_{ir} U_{iq} \sum_{j=i+1}^{n} (DV)_{rj}^{T} (DV)_{qj}^{T} \right) \\ &= \sum_{r=1}^{k} \sum_{q=1}^{k} \left( \sum_{i=1}^{n} U_{ir}^{rq} V_{i}^{rq\Delta} \right) \\ &= \sum_{r=1}^{k} \sum_{q=1}^{k} \left\langle U^{rq}, V^{rq\Delta} \right\rangle, \end{split}$$

and putting all three of these pieces together completes the proof.

# **D** Supplement to data analysis

This section reports the journals included in the data analysis and the factor hubs referenced in the main body of the paper.

Table 5: Journals considered in data analysis

| # | Journal Title                                                             |
|---|---------------------------------------------------------------------------|
| 1 | Journal Of Statistical Software                                           |
| 2 | Annual Review Of Statistics And Its Application                           |
| 3 | Econometrica                                                              |
| 4 | Journal Of The American Statistical Association                           |
| 5 | Journal Of The Royal Statistical Society Series B-Statistical Methodology |
| 6 | Statistical Science                                                       |
| 7 | R Journal                                                                 |
|   |                                                                           |

| Table 5: | Journals | considered | in | data | analysis ( | continued | ) |
|----------|----------|------------|----|------|------------|-----------|---|
|          |          |            |    |      |            |           |   |

| #               | Journal Title                                                                              |
|-----------------|--------------------------------------------------------------------------------------------|
| 9               | Biostatistics                                                                              |
| 10              | Statistics And Computing                                                                   |
| 11              | Ieee-Acm Transactions On Computational Biology And Bioinformatics                          |
| 12              | Journal Of Business & Economic Statistics                                                  |
| 13              | Chemometrics And Intelligent Laboratory Systems                                            |
| 14              | Multivariate Behavioral Research                                                           |
| 15              | International Statistical Review                                                           |
| 16              | Bayesian Analysis                                                                          |
| 17              | Annals Of Statistics                                                                       |
| 18              | Probabilistic Engineering Mechanics                                                        |
| 19              | British Journal Of Mathematical & Statistical Psychology                                   |
| 20              | Annals Of Probability                                                                      |
| 21              | Stochastic Environmental Research And Risk Assessment                                      |
| 22              | Journal Of Computational And Graphical Statistics                                          |
| 23              | Statistical Methods In Medical Research                                                    |
| 24              | Quality Technology And Quantitative Management                                             |
| 25              | Journal Of The Royal Statistical Society Series A-Statistics In Society                    |
| 26              | Econometrics Journal                                                                       |
| 27              | Probability Theory And Related Fields                                                      |
| 28              | Technometrics                                                                              |
| 29              | Finance And Stochastics                                                                    |
| 30              | Journal Of Quality Technology                                                              |
| 31              | Stata Journal                                                                              |
| 32              | Open Systems & Information Dynamics                                                        |
| 33              | American Statistician                                                                      |
| $\frac{34}{35}$ | Statistics In Medicine<br>Biometrics                                                       |
|                 |                                                                                            |
| 36              | Scandinavian Actuarial Journal                                                             |
| 37              | Annals Of Applied Statistics                                                               |
| 38              | Spatial Statistics                                                                         |
| 39<br>40        | Journal Of Agricultural Biological And Environmental Statistics<br>Journal Of Chemometrics |
| 40              |                                                                                            |
| 41              | Biometrika                                                                                 |
| 42              | Advances In Data Analysis And Classification                                               |
| 43              | Journal Of The Royal Statistical Society Series C-Applied Statistics                       |
| 44              | Annals Of Applied Probability<br>Bernoulli                                                 |
| 45              |                                                                                            |
| 46              | Statistical Papers                                                                         |
| 47              | Statistical Modelling                                                                      |
| 48              | Biometrical Journal                                                                        |
| $\frac{49}{50}$ | Stochastic Processes And Their Applications<br>Statistical Analysis And Data Mining        |
|                 | · ·                                                                                        |
| 51              | Stochastics And Partial Differential Equations-Analysis And Computations                   |
| 52              | Pharmaceutical Statistics                                                                  |
| 53<br>E 4       | Insurance Mathematics & Economics                                                          |
| $\frac{54}{55}$ | Quality Engineering<br>Annales De L Institut Henri Poincare-Probabilites Et Statistiques   |
|                 | Astin Bulletin                                                                             |
| $\frac{56}{57}$ | Random Matrices-Theory And Applications                                                    |
| $57 \\ 58$      | Test                                                                                       |
| 59              | Computational Statistics & Data Analysis                                                   |
| 60              | Applied Stochastic Models In Business And Industry                                         |
| 61              | Econometric Theory                                                                         |
|                 |                                                                                            |

62 Extremes

| Table 5: | Journals | considered | in | data | analysis | (continued) |
|----------|----------|------------|----|------|----------|-------------|
|          |          |            |    |      |          |             |

| #          | Journal Title                                                                                                      |
|------------|--------------------------------------------------------------------------------------------------------------------|
| 63         | Journal Of Multivariate Analysis                                                                                   |
| 64         | Electronic Journal Of Probability                                                                                  |
| 65         | Journal Of Computational Biology                                                                                   |
|            |                                                                                                                    |
| 66         | Environmetrics                                                                                                     |
| 67         | Stochastic Analysis And Applications                                                                               |
| 68         | Journal Of Applied Statistics                                                                                      |
| 69         | Statistica Neerlandica                                                                                             |
| 70         | Environmental And Ecological Statistics                                                                            |
| 71         | Asta-Advances In Statistical Analysis                                                                              |
| 72         | Statistica Sinica                                                                                                  |
| 73         | Econometric Reviews                                                                                                |
| 74         | Scandinavian Journal Of Statistics                                                                                 |
| 75         | Journal Of Statistical Computation And Simulation                                                                  |
| 76         | Oxford Bulletin Of Economics And Statistics                                                                        |
| 77         | Combinatorics Probability & Computing                                                                              |
| 78         | Electronic Journal Of Statistics                                                                                   |
| 79         | Journal Of Official Statistics                                                                                     |
| 80         | Journal Of Time Series Analysis                                                                                    |
|            |                                                                                                                    |
| 81         | Methodology And Computing In Applied Probability                                                                   |
| 82         | Lifetime Data Analysis                                                                                             |
| 83         | Probability In The Engineering And Informational Sciences                                                          |
| 84<br>or   | Sort-Statistics And Operations Research Transactions<br>Statistical Applications In Genetics And Molecular Biology |
| 85         | Statistical Applications in Genetics And Molecular Biology                                                         |
| 86         | Stat                                                                                                               |
| 87         | Stochastics-An International Journal Of Probability And Stochastic Processes                                       |
| 88         | Annals Of The Institute Of Statistical Mathematics                                                                 |
| 89         | Computational Statistics                                                                                           |
| 90         | Stochastics And Dynamics                                                                                           |
| 91         | Advances In Applied Probability                                                                                    |
| 92         | Statistics In Biopharmaceutical Research                                                                           |
| 93         | Journal Of Theoretical Probability                                                                                 |
| 94         | Statistics & Probability Letters                                                                                   |
| 95         | Hacettepe Journal Of Mathematics And Statistics                                                                    |
| 96         | Journal Of Statistical Planning And Inference                                                                      |
| 97         | Metrika                                                                                                            |
| 98         | Survey Methodology                                                                                                 |
| 99         | International Journal Of Biostatistics                                                                             |
| 00         | Law Probability & Risk                                                                                             |
| 01         | Revstat-Statistical Journal                                                                                        |
| .01        | Canadian Journal Of Statistics-Revue Canadienne De Statistique                                                     |
| .03        | Communications In Statistics-Simulation And Computation                                                            |
| .04        | Statistics                                                                                                         |
| 05         | Brazilian Journal Of Probability And Statistics                                                                    |
| 06         | Alea-Latin American Journal Of Probability And Mathematical Statistics                                             |
| 06<br>07   | Probability And Mathematical Statistics-Poland                                                                     |
| 07<br>08   | Statistical Methods And Applications                                                                               |
| 08         | Communications In Statistics-Theory And Methods                                                                    |
| 10         | Journal Of Nonparametric Statistics                                                                                |
|            | •                                                                                                                  |
| 11         | Electronic Communications In Probability                                                                           |
| 12<br>12   | Journal Of Biopharmaceutical Statistics<br>Stochastia Modela                                                       |
| $13 \\ 14$ | Stochastic Models<br>Mathematical Population Studies                                                               |
| $14 \\ 15$ | Journal Of Applied Probability                                                                                     |
| 10         | Journal Of Applied 1 (Obability                                                                                    |
| 16         | Sequential Analysis-Design Methods And Applications                                                                |

116 Sequential Analysis-Design Methods And Applications

### Table 5: Journals considered in data analysis (continued)

| #   | Journal Title                                                        |
|-----|----------------------------------------------------------------------|
| 117 | International Journal Of Game Theory                                 |
| 118 | Infinite Dimensional Analysis Quantum Probability And Related Topics |
| 119 | Journal Of The Korean Statistical Society                            |
| 120 | Australian & New Zealand Journal Of Statistics                       |
| 121 | Esaim-Probability And Statistics                                     |
| 122 | Theory Of Probability And Its Applications                           |
| 123 | Markov Processes And Related Fields                                  |
| 124 | Utilitas Mathematica                                                 |
| 125 | Annals Of Mathematical Statistics                                    |

### Table 6: Y (incoming citation) factor hubs

| ID  | Title                                                                                                             | Cited by | Cites |
|-----|-------------------------------------------------------------------------------------------------------------------|----------|-------|
| y01 | Variable Selection Via Nonconcave Penalized Likelihood And Its Oracle<br>Properties                               | 2804     | 14    |
| y01 | The Adaptive Lasso And Its Oracle Properties                                                                      | 2052     | 14    |
| y01 | Nearly Unbiased Variable Selection Under Minimax Concave Penalty                                                  | 987      | 36    |
| y01 | One-Step Sparse Estimates In Nonconcave Penalized Likelihood Models                                               | 481      | 27    |
| y01 | Tuning Parameter Selectors For The Smoothly Clipped Absolute Deviation Method                                     | 407      | 17    |
| y02 | Sure Independence Screening For Ultrahigh Dimensional Feature Space                                               | 905      | 33    |
| y02 | Feature Screening Via Distance Correlation Learning                                                               | 327      | 22    |
| y02 | Sure Independence Screening In Generalized Linear Models With<br>Np-Dimensionality                                | 305      | 24    |
| y02 | Model-Free Feature Screening For Ultrahigh-Dimensional Data                                                       | 246      | 17    |
| y02 | Nonparametric Independence Screening In Sparse Ultra-High-Dimensional<br>Additive Models                          | 262      | 27    |
| v03 | Bayesian Measures Of Model Complexity And Fit                                                                     | 2107     | 38    |
| y03 | Prior Distributions For Variance Parameters In Hierarchical Models(Comment<br>On An Article By Browne And Draper) | 906      | 28    |
| y03 | Bayesian Image-Restoration, With 2 Applications In Spatial Statistics                                             | 797      | 3     |
| y03 | Winbugs - A Bayesian Modelling Framework: Concepts, Structure, And Extensibility                                  | 645      | 6     |
| y03 | Deviance Information Criteria For Missing Data Models                                                             | 311      | 8     |
| y04 | On Asymptotically Optimal Confidence Regions And Tests For<br>High-Dimensional Models                             | 360      | 36    |
| y04 | Confidence Intervals For Low Dimensional Parameters In High Dimensional<br>Linear Models                          | 350      | 33    |
| y04 | Simultaneous Analysis Of Lasso And Dantzig Selector                                                               | 617      | 16    |
| y04 | The Dantzig Selector:: Statistical Estimation When ${\cal P}$ Is Much Larger Than $N$                             | 697      | 11    |
| y04 | Exact Post-Selection Inference, With Application To The Lasso                                                     | 188      | 22    |
| y05 | Regression Models And Life-Tables                                                                                 | 4087     | 21    |
| y05 | Cox Regression-Model For Counting-Processes - A Large Sample Study                                                | 1218     | 13    |
| y05 | Nonparametric-Estimation From Incomplete Observations                                                             | 1853     | 11    |
| y05 | Partial Likelihood                                                                                                | 933      | 6     |
| y05 | The Lasso Method For Variable Selection In The Cox Model                                                          | 398      | 4     |
| y06 | Estimating Dimension Of A Model                                                                                   | 3727     | 3     |
| y06 | Model-Based Clustering, Discriminant Analysis, And Density Estimation                                             | 594      | 43    |
| y06 | Some Comments On Cp                                                                                               | 770      | 18    |
| y06 | Model-Based Gaussian And Non-Gaussian Clustering                                                                  | 429      | 16    |
| y06 | Regression And Time-Series Model Selection In Small Samples                                                       | 457      | 12    |
| y07 | The Central Role Of The Propensity Score In Observational Studies For Causal Effects                              | 1497     | 11    |

| ID          | Title                                                                                                                                   | Cited by | Cites |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| y07         | Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study                 | 334      | 8     |
| y07         | Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data         | 416      | 28    |
| y07         | Estimation Of Regression-Coefficients When Some Regressors Are Not Always Observed                                                      | 1034     | 21    |
| y07         | Matching Methods For Causal Inference: A Review And A Look Forward                                                                      | 272      | 66    |
| y08         | Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing                                         | 2025     | (     |
| y08         | The Control Of The False Discovery Rate In Multiple Testing Under Dependency                                                            | 644      | 2     |
| y08         | A Direct Approach To False Discovery Rates                                                                                              | 555      | Į     |
| y08         | Empirical Bayes Analysis Of A Microarray Experiment                                                                                     | 445      | -     |
| y08         | Strong Control, Conservative Point Estimation And Simultaneous Conservative<br>Consistency Of False Discovery Rates: A Unified Approach | 327      | 1(    |
| v09         | Sparse Inverse Covariance Estimation With The Graphical Lasso                                                                           | 754      |       |
| /09         | High-Dimensional Graphs And Variable Selection With The Lasso                                                                           | 885      | 1:    |
| /09         | Model Selection And Estimation In The Gaussian Graphical Model                                                                          | 477      |       |
| 709         | A Constrained $L_{1}$ Minimization Approach To Sparse Precision Matrix Estimation                                                       | 320      | 1     |
| 709         | Sparse Permutation Invariant Covariance Estimation                                                                                      | 265      | 2     |
| /10         | Bayesian Analysis Of Some Nonparametric Problems                                                                                        | 1373     |       |
| /10         | A Constructive Definition Of Dirichlet Priors                                                                                           | 711      |       |
| /10         | Bayesian Density-Estimation And Inference Using Mixtures                                                                                | 724      | 1     |
| /10         | Gibbs Sampling Methods For Stick-Breaking Priors                                                                                        | 496      | 3     |
| /10         | Mixtures Of Dirichlet Processes With Applications To Bayesian Nonparametric Problems                                                    | 505      |       |
| /11         | Sliced Inverse Regression For Dimension Reduction                                                                                       | 930      | 2     |
| /11         | Sliced Inverse Regression For Dimension Reduction - Comment                                                                             | 488      |       |
| y11         | An Adaptive Estimation Of Dimension Reduction Space                                                                                     | 472      | 2     |
| /11         | On Directional Regression For Dimension Reduction                                                                                       | 263      | 2     |
| /11         | On Principal Hessian Directions For Data Visualization And Dimension<br>Reduction - Another Application Of Steins Lemma                 | 317      | 2     |
| y12         | Regularization Paths For Generalized Linear Models Via Coordinate Descent                                                               | 1124     | 1     |
| /12         | Regularization And Variable Selection Via The Elastic Net                                                                               | 1584     | 1     |
| /12         | Least Angle Regression                                                                                                                  | 1259     | 1     |
| $\sqrt{12}$ | Flexible Smoothing With B-Splines And Penalties                                                                                         | 1074     |       |
| $\sqrt{12}$ | Pathwise Coordinate Optimization                                                                                                        | 410      |       |
| /13         | Regression Shrinkage And Selection Via The Lasso                                                                                        | 4759     |       |
| /13         | Regularization And Variable Selection Via The Elastic Net                                                                               | 1584     | 1     |
| /13         | Least Angle Regression                                                                                                                  | 1259     | 1     |
| /13         | Random-Effects Models For Longitudinal Data                                                                                             | 1540     | 1     |
| /13         | The Bayesian Lasso                                                                                                                      | 568      | 1     |
| /14         | An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach    | 512      | 5     |
| /14         | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                          | 812      | 10    |
| $\sqrt{14}$ | Stationary Process Approximation For The Analysis Of Large Spatial Datasets                                                             | 380      | 1     |
| $\sqrt{14}$ | Fixed Rank Kriging For Very Large Spatial Data Sets                                                                                     | 347      | 1     |
| y14         | Hierarchical Nearest-Neighbor Gaussian Process Models For Large Geostatistical Datasets                                                 | 190      | 2     |
| y15         | Empirical Likelihood Ratio Confidence-Intervals For A Single Functional                                                                 | 1115     |       |
| y15         | Empirical Likelihood Ratio Confidence-Regions                                                                                           | 913      | 1     |
| y15         | Empirical Likelihood And General Estimating Equations                                                                                   | 877      | 1     |
| y15         | Empirical Likelihood For Linear-Models                                                                                                  | 371      | 2     |
| y15         | Methodology And Algorithms Of Empirical Likelihood                                                                                      | 241      | 1     |

# Table 6: Y (incoming citation) factor hubs (continued)

| ID         | Title                                                                                                                                           | Cited by      | Cites                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|
| y16<br>y16 | Longitudinal Data-Analysis Using Generalized Linear-Models<br>Improving Generalised Estimating Equations Using Quadratic Inference<br>Functions | $2624 \\ 235$ | $\begin{array}{c} 11 \\ 13 \end{array}$ |
| y16        | Longitudinal Data-Analysis For Discrete And Continuous Outcomes                                                                                 | 516           | 16                                      |
| y16        | Approximate Inference In Generalized Linear Mixed Models                                                                                        | 1345          | 41                                      |
| y16        | Quasi-Likelihood Functions, Generalized Linear-Models, And Gauss-Newton Method                                                                  | 618           | 3                                       |
| y17        | Functional Data Analysis For Sparse Longitudinal Data                                                                                           | 640           | 24                                      |
| y17        | Functional Linear Regression Analysis For Longitudinal Data                                                                                     | 342           | 19                                      |
| y17        | Methodology And Convergence Rates For Functional Linear Regression                                                                              | 295           | 12                                      |
| y17        | Prediction In Functional Linear Regression                                                                                                      | 263           | 20                                      |
| y17        | Generalized Functional Linear Models                                                                                                            | 280           | 20                                      |
| y18        | A Class Of Distributions Which Includes The Normal Ones                                                                                         | 886           | 5                                       |
| y18        | The Multivariate Skew-Normal Distribution                                                                                                       | 632           | 8                                       |
| y18        | Statistical Applications Of The Multivariate Skew Normal Distribution                                                                           | 490           | 6                                       |
| y18        | Distributions Generated By Perturbation Of Symmetry With Emphasis On A<br>Multivariate Skew <i>T</i> -Distribution                              | 480           | 17                                      |
| y18        | A General Class Of Multivariate Skew-Elliptical Distributions                                                                                   | 297           | 3                                       |
| y19        | Regression Quantiles                                                                                                                            | 1603          | 21                                      |
| y19        | Bayesian Quantile Regression                                                                                                                    | 286           | 7                                       |
| y19        | Composite Quantile Regression And The Oracle Model Selection Theory                                                                             | 291           | 6                                       |
| y19        | Gibbs Sampling Methods For Bayesian Quantile Regression                                                                                         | 154           | 19                                      |
| y19        | Goodness Of Fit And Related Inference Processes For Quantile Regression                                                                         | 210           | 12                                      |
| y20        | Bayes Factors                                                                                                                                   | 1553          | 56                                      |
| y20        | Variable Selection Via Gibbs Sampling                                                                                                           | 781           | 8                                       |
| y20        | The Bayesian Lasso                                                                                                                              | 568           | 11                                      |
| y20        | Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model<br>Determination                                                        | 1193          | 12                                      |
| y20        | The Horseshoe Estimator For Sparse Signals                                                                                                      | 354           | 14                                      |
| y21        | Inference And Missing Data                                                                                                                      | 1905          | 9                                       |
| y21        | Estimation Of Regression-Coefficients When Some Regressors Are Not Always Observed                                                              | 1034          | 21                                      |
| y21        | Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse<br>Models                                                                  | 480           | 35                                      |
| y21        | Pattern-Mixture Models For Multivariate Incomplete Data                                                                                         | 352           | 14                                      |
| y21        | A Generalization Of Sampling Without Replacement From A Finite Universe                                                                         | 1160          | 5                                       |
| y22        | Closed Testing Procedures With Special Reference To Ordered Analysis Of Variance                                                                | 557           | 6                                       |
| y22        | Evaluation Of Experiments With Adaptive Interim Analyses                                                                                        | 277           | 7                                       |
| y22        | Adaptive Sample Size Calculations In Group Sequential Trials                                                                                    | 241           | 16                                      |
| y22        | A Simple Sequentially Rejective Multiple Test Procedure                                                                                         | 748           | 3                                       |
| y22        | Multiple Testing Procedure For Clinical-Trials                                                                                                  | 621           | 1                                       |
| y23        | Flexible Smoothing With B-Splines And Penalties                                                                                                 | 1074          | 7                                       |
| y23        | Approximate Inference In Generalized Linear Mixed Models                                                                                        | 1345          | 41                                      |
| y23        | Random-Effects Models For Longitudinal Data                                                                                                     | 1540          | 11                                      |
| y23        | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                                  | 812           | 109                                     |
| y23        | Selecting The Number Of Knots For Penalized Splines                                                                                             | 314           | 10                                      |
| y24        | On The Distribution Of The Largest Eigenvalue In Principal Components<br>Analysis                                                               | 486           | 7                                       |
| y24        | Covariance Regularization By Thresholding                                                                                                       | 399           | 20                                      |
| y24        | Regularized Estimation Of Large Covariance Matrices                                                                                             | 392           | 14                                      |
| y24        | Large Covariance Estimation By Thresholding Principal Orthogonal                                                                                | 214           | 63                                      |
| y24        | Complements<br>Determining The Number Of Factors In Approximate Factor Models                                                                   | 434           | 5                                       |

# Table 6: Y (incoming citation) factor hubs (continued)

| ID  | Title                                                                                                                           | Cited by | Cites |
|-----|---------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| y25 | Monte-Carlo Sampling Methods Using Markov Chains And Their Applications                                                         | 1431     | 4     |
| y25 | Sampling-Based Approaches To Calculating Marginal Densities                                                                     | 1695     | 9     |
| y25 | Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model<br>Determination                                        | 1193     | 12    |
| y25 | Markov-Chains For Exploring Posterior Distributions                                                                             | 924      | 11    |
| y25 | The Calculation Of Posterior Distributions By Data Augmentation                                                                 | 1035     | 5     |
| y26 | Generalized Partially Linear Single-Index Models                                                                                | 522      | 12    |
| y26 | Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially<br>Linear Models                                  | 360      | 24    |
| y26 | Penalized Spline Estimation For Partially Linear Single-Index Models                                                            | 329      | 17    |
| y26 | Optimal Smoothing In Single-Index Models                                                                                        | 386      | 4     |
| y26 | Statistical Estimation In Varying Coefficient Models                                                                            | 329      | 14    |
| y27 | Estimation Of Regression-Coefficients When Some Regressors Are Not Always Observed                                              | 1034     | 21    |
| y27 | A Generalization Of Sampling Without Replacement From A Finite Universe                                                         | 1160     | Ę     |
| y27 | Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data | 416      | 28    |
| y27 | Doubly Robust Estimation In Missing Data And Causal Inference Models                                                            | 422      | 16    |
| y27 | Cox Regression-Model For Counting-Processes - A Large Sample Study                                                              | 1218     | 13    |
| y28 | Estimating Individualized Treatment Rules Using Outcome Weighted Learning                                                       | 280      | 20    |
| y28 | A Robust Method For Estimating Optimal Treatment Regimes                                                                        | 210      | 10    |
| y28 | Performance Guarantees For Individualized Treatment Rules                                                                       | 219      | 22    |
| y28 | Estimating Optimal Treatment Regimes From A Classification Perspective                                                          | 117      | 1     |
| y28 | New Statistical Learning Methods For Estimating Optimal Dynamic Treatment Regimes                                               | 96       | 20    |
| y29 | Ridge Regression - Biased Estimation For Nonorthogonal Problems                                                                 | 1402     | -     |
| y29 | Regularization And Variable Selection Via The Elastic Net                                                                       | 1584     | 1     |
| y29 | Performance Of Some New Ridge Regression Estimators                                                                             | 233      | 1     |
| y29 | A New Class Of Biased Estimate In Linear-Regression                                                                             | 257      | į     |
| y29 | Monte-Carlo Evaluation Of Some Ridge-Type Estimators                                                                            | 263      | 8     |
| y30 | Estimation In A Cox Proportional Hazards Cure Model                                                                             | 279      | 10    |
| y30 | Survival Curve For Cancer Patients Following Treatment                                                                          | 319      | ;     |
| y30 | A Mixture Model Combining Logistic-Regression With Proportional Hazards<br>Regression                                           | 258      | į     |
| y30 | The Use Of Mixture-Models For The Analysis Of Survival-Data With Long-Term Survivors                                            | 343      | (     |
| y30 | A Nonparametric Mixture Model For Cure Rate Estimation                                                                          | 211      | 1:    |

#### Table 6: Y (incoming citation) factor hubs (continued)

# Table 7: Z (outgoing citation) factor hubs

| ID  | Title                                                                         | Cited by | Cites |
|-----|-------------------------------------------------------------------------------|----------|-------|
| z01 | Scad-Penalized Regression In Additive Partially Linear Proportional Hazards   | 3        | 37    |
|     | Models With An Ultra-High-Dimensional Linear Part                             |          |       |
| z01 | Scad-Penalized Least Absolute Deviation Regression In High-Dimensional Models | 5        | 29    |
| z01 | Regularization Parameter Selections Via Generalized Information Criterion     | 102      | 27    |
| z01 | Partially Linear Structure Selection In Cox Models With Varying Coefficients  | 11       | 43    |
| z01 | Variable Selection And Estimation Using A Continuous Approximation To The $L$ | 1        | 28    |
|     | <sub>0</sub> Penalty                                                          |          |       |
| z02 | Bayesian Statistics In Medicine: A 25 Year Review                             | 23       | 511   |
| z02 | Construction Of Optimal Multi-Level Supersaturated Designs                    | 47       | 32    |
| z02 | Methodological Issues With Adaptation Of Clinical Trial Design                | 12       | 41    |
| z02 | $E(\chi^2)$ -Optimal Mixed-Level Supersaturated Designs                       | 18       | 32    |
| z02 | Optimal Multi-Level Supersaturated Designs Constructed From Linear And        | 7        | 23    |
|     | Quadratic Functions                                                           |          |       |

| ID         | Title                                                                                                                       | Cited by            | Cites    |
|------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------|----------|
| z03        | Are Nonprofit Antipoverty Organizations Located Where They Are Needed? A<br>Spatial Analysis Of The Greater Hartford Region | 1                   | 21       |
| z03        | Space-Time Interactions In Bayesian Disease Mapping With Recent Tools:<br>Making Things Easier For Practitioners            | 0                   | 25       |
| z03        | Bayesian Shared Spatial-Component Models To Combine And Borrow Strength<br>Across Sparse Disease Surveillance Sources       | 2                   | 25       |
| z03<br>z03 | Some Recent Work On Multivariate Gaussian Markov Random Fields<br>Bayesian Disease Mapping: Past, Present, And Future       | $     19 \\     5 $ | 63<br>98 |
| z04        | Maximum Likelihood Estimation In Semiparametric Regression Models With                                                      | 204                 | 53       |
| z04        | Censored Data<br>Estimation For High-Dimensional Linear Mixed-Effects Models Using<br>$L_1$ -Penalization                   | 47                  | 24       |
| z04        | Shared Frailty Models For Recurrent Events And A Terminal Event                                                             | 173                 | 22       |
| z04        | The Adaptive And The Thresholded Lasso For Potentially Misspecified Models<br>(And A Lower Bound For The Lasso)             | 42                  | 2        |
| z04        | A General Theory Of Concave Regularization For High-Dimensional Sparse<br>Estimation Problems                               | 83                  | 3        |
| z05        | An Overview Of Semiparametric Models In Survival Analysis                                                                   | 5                   | 7        |
| z05        | Fifty Years Of The Cox Model                                                                                                | 1                   | 4        |
| z05        | Marginal Screening For High-Dimensional Predictors Of Survival Outcomes                                                     | 2                   | 5        |
| z05        | Biometrika Highlights From Volume 28 Onwards                                                                                | 2                   | 60       |
| 205        | Nonparametric Inference For Right-Censored Data Using Smoothing Splines                                                     | 0                   | 3        |
| z06        | Asymmetric Clusters And Outliers: Mixtures Of Multivariate Contaminated<br>Shifted Asymmetric Laplace Distributions         | 11                  | 6        |
| 206        | The Multivariate Leptokurtic-Normal Distribution And Its Application In<br>Model-Based Clustering                           | 25                  | 5        |
| z06        | A Mixture Of Generalized Hyperbolic Distributions                                                                           | 60                  | 3        |
| 206        | Clustering, Classification, Discriminant Analysis, And Dimension Reduction Via<br>Generalized Hyperbolic Mixtures           | 6                   | 3        |
| z06        | Mixtures Of Multivariate Contaminated Normal Regression Models                                                              | 18                  | 6        |
| z07        | Matching Methods For Causal Inference: A Review And A Look Forward                                                          | 272                 | 6        |
| 207        | Covariate Balancing Propensity Score                                                                                        | 148                 | 3        |
| z07        | Balancing Vs Modeling Approaches To Weighting In Practice                                                                   | 13                  | 3        |
| 207        | Globally Efficient Non-Parametric Inference Of Average Treatment Effects By<br>Empirical Balancing Calibration Weighting    | 50                  | 3        |
| z07        | Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis<br>And Causal Inference                          | 0                   | 7        |
| z08        | A Review Of Modern Multiple Hypothesis Testing, With Particular Attention To The False Discovery Proportion                 | 40                  | 7        |
| 208        | Multiple Hypothesis Testing In Genomics                                                                                     | 21                  | 6        |
| z08        | Adaptive False Discovery Rate Control For Heterogeneous Data                                                                | 7                   | 3        |
| 208        | Power-Enhanced Multiple Decision Functions Controlling Family-Wise Error And<br>False Discovery Rates                       | 20                  | 3        |
| 208        | Covariate-Assisted Ranking And Screening For Large-Scale Two-Sample Inference                                               | 29                  | 6        |
| 209        | Experiments In Stochastic Computation For High-Dimensional Graphical Models                                                 | 95                  | 1        |
| z09        | Covariance Matrix Selection And Estimation Via Penalised Normal Likelihood                                                  | 159                 | 1        |
| 209        | Evaluation Of Community-Intervent Ion Trials Via Generalized Linear Mixed<br>Models                                         | 6                   | 1        |
| z09        | Monte Carlo Method For Computing The Marginal Likelihood In<br>Nondecomposable Gaussian Graphical Models                    | 67                  |          |
| z09        | The Analysis Of Ordered Categorical Data: An Overview And A Survey Of<br>Recent Developments - Discussion                   | 0                   | 17       |
| z10        | Mixture Models With A Prior On The Number Of Components                                                                     | 70                  | 6        |
| z10<br>z10 | The Nested Dirichlet Process                                                                                                | 70<br>69            | 3        |
| z10<br>z10 | A Comparative Review Of Variable Selection Techniques For Covariate                                                         | 9                   | 4        |
|            | Dependent Dirichlet Process Mixture Models                                                                                  | -<br>-              |          |

| D          | Title                                                                                                                                                                      | Cited by | Cites    |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| :10        | Bayesian Dynamic Density Estimation                                                                                                                                        | 33       | 28       |
| 10         | Some Issues In Nonparametric Bayesian Modelling Using Species Sampling Models                                                                                              | 23       | 57       |
| 11         | A Review On Dimension Reduction                                                                                                                                            | 59       | 74       |
| 11         | Sufficient Dimension Reduction Via Inverse Regression: A Minimum Discrepancy<br>Approach                                                                                   | 179      | 35       |
| 11         | Feature Filter For Estimating Central Mean Subspace And Its Sparse Solution                                                                                                | 1        | 53       |
| 11         | Covariate Information Matrix For Sufficient Dimension Reduction<br>A Structured Covariance Ensemble For Sufficient Dimension Reduction                                     | 4        | 46       |
| $11 \\ 12$ | Modeling Multiple Regimes In Financial Volatility With A Flexible Coefficient                                                                                              | 0<br>9   | 47<br>30 |
| 12         | Garch(1,1) Model<br>Automated Inference And Learning In Modeling Financial Volatility                                                                                      | 34       | 24       |
| 12         | Pseudo-Maximum Likelihood Estimation Of $Arch(\infty)$ Models                                                                                                              | 27       | 22       |
| 12         | A Double Ar( $P$ ) Model:: Structure And Estimation                                                                                                                        | 43       | 30       |
| 12         | Break Detection In The Covariance Structure Of Multivariate Time Series Models                                                                                             | 139      | 27       |
| 13         | A Tutorial On The Lasso Approach To Sparse Modeling                                                                                                                        | 24       | 16       |
| 13         | Regularized Partial Least Squares With An Application To Nmr Spectroscopy                                                                                                  | 6        | 22       |
| 13         | Sparse Partial Least Squares Regression For Simultaneous Dimension Reduction<br>And Variable Selection                                                                     | 145      | 24       |
| 13         | Penalized Classification Using Fisher's Linear Discriminant                                                                                                                | 96       | 24       |
| 13         | Alternative Penalty Functions For Penalized Likelihood Principal Components                                                                                                | 0        | 9        |
| 14         | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                                                             | 812      | 109      |
| 14         | High-Dimensional Bayesian Geostatistics                                                                                                                                    | 23       | 51       |
| 14         | Space-Time Covariance Functions                                                                                                                                            | 164      | 17       |
| 14         | A Case Study Competition Among Methods For Analyzing Large Spatial Data                                                                                                    | 111      | 52       |
| 14         | An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach                                       | 512      | 55       |
| 15         | A Review Of Empirical Likelihood Methods For Time Series                                                                                                                   | 18       | 76       |
| 15         | A Review On Empirical Likelihood Methods For Regression                                                                                                                    | 81       | 63       |
| 15         | Empirical Likelihood For A Varying Coefficient Model With Longitudinal Data                                                                                                | 133      | 34       |
| 15         | Empirical Likelihood For Single-Index Models                                                                                                                               | 65       | 29       |
| 15         | Smoothed Empirical Likelihood Methods For Quantile Regression Models                                                                                                       | 47       | 30       |
| 16         | Improving The Correlation Structure Selection Approach For Generalized<br>Estimating Equations And Balanced Longitudinal Data                                              | 19       | 29       |
| 16         | Finite Sample Adjustments In Estimating Equations And Covariance Estimators<br>For Intracluster Correlations                                                               | 21       | 32       |
| 16         | Criterion For The Simultaneous Selection Of A Working Correlation Structure<br>And Either Generalized Estimating Equations Or The Quadratic Inference<br>Function Approach | 10       | 34       |
| 16         | A Modified Pseudolikelihood Approach For Analysis Of Longitudinal Data                                                                                                     | 9        | 31       |
| 16         | Effect Partitioning In Cross-Sectionally Clustered Data Without Multilevel Models                                                                                          | 0        | 46       |
| 17         | Methods For Scalar-On-Function Regression                                                                                                                                  | 58       | 124      |
| 17         | A Survey Of Functional Principal Component Analysis                                                                                                                        | 24       | 88       |
| 17         | Functional Response Models                                                                                                                                                 | 70       | 21       |
| 17         | Dynamic Relations For Sparsely Sampled Gaussian Processes                                                                                                                  | 4        | 59       |
| 17         | Functional Modelling And Classification Of Longitudinal Data                                                                                                               | 97       | 45       |
| 18         | An Overview On The Progeny Of The Skew-Normal Family-A Personal<br>Perspective                                                                                             | 4        | 104      |
| 18         | A Unified View On Skewed Distributions Arising From Selections                                                                                                             | 106      | 37       |
| 18         | The Skew-Normal Distribution And Related Multivariate Families                                                                                                             | 255      | 36       |
| 18         | On Mixtures Of Skew Normal And Skew T-Distributions                                                                                                                        | 76       | 28       |
|            | Model-Based Clustering And Classification With Non-Normal Mixture                                                                                                          | 38       | 32       |

| ID  | Title                                                                                                                       | Cited by | Cites |
|-----|-----------------------------------------------------------------------------------------------------------------------------|----------|-------|
| z19 | Posterior Inference In Bayesian Quantile Regression With Asymmetric Laplace<br>Likelihood                                   | 33       | 49    |
| z19 | Multiple Quantile Modeling Via Reduced-Rank Regression                                                                      | 1        | 37    |
| z19 | Bayesian Model Selection In Ordinal Quantile Regression                                                                     | 6        | 49    |
| z19 | Model Selection In Binary And Tobit Quantile Regression Using The Gibbs<br>Sampler                                          | 23       | 37    |
| z19 | Linear Quantile Mixed Models                                                                                                | 51       | 45    |
| z20 | Bayesian Approaches To Variable Selection: A Comparative Study From<br>Practical Perspectives                               | 4        | 78    |
| z20 | Prior Distributions For Objective Bayesian Analysis                                                                         | 27       | 141   |
| z20 | Mixtures Of $G$ Priors For Bayesian Variable Selection                                                                      | 279      | 22    |
| z20 | Transdimensional Markov Chains: A Decade Of Progress And Future<br>Perspectives                                             | 30       | 57    |
| z20 | Hierarchical Bayesian Formulations For Selecting Variables In Regression Models                                             | 9        | 49    |
| z21 | A Brief Review Of Approaches To Non-Ignorable Non-Response                                                                  | 4        | 68    |
| z21 | Missing-Data Methods For Generalized Linear Models: A Comparative Review                                                    | 148      | 64    |
| z21 | Analysis Of Longitudinal Data With Drop-Out: Objectives, Assumptions And A Proposal                                         | 40       | 53    |
| z21 | Formal And Informal Model Selection With Incomplete Data                                                                    | 5        | 55    |
| z21 | Missing Data Methods In Longitudinal Studies: A Review                                                                      | 76       | 79    |
| z22 | Group Sequential And Adaptive Designs - A Review Of Basic Concepts And<br>Points Of Discussion                              | 12       | 76    |
| z22 | Twenty-Five Years Of Confirmatory Adaptive Designs: Opportunities And<br>Pitfalls                                           | 53       | 113   |
| z22 | Adaptive Seamless Designs: Selection And Prospective Testing Of Hypotheses                                                  | 31       | 61    |
| z22 | Adaptive Designs For Confirmatory Clinical Trials                                                                           | 90       | 56    |
| z22 | An Adaptive Confirmatory Trial With Interim Treatment Selection: Practical<br>Experiences And Unbalanced Randomization      | 6        | 49    |
| z23 | Semiparametric Regression During 2003-2007                                                                                  | 58       | 219   |
| z23 | Twenty Years Of P-Splines                                                                                                   | 42       | 103   |
| z23 | Fast Stable Restricted Maximum Likelihood And Marginal Likelihood<br>Estimation Of Semiparametric Generalized Linear Models | 224      | 35    |
| z23 | Generalized Structured Additive Regression Based On Bayesian P-Splines                                                      | 116      | 34    |
| z23 | Tutorial In Biostatistics: Spline Smoothing With Linear Mixed Models                                                        | 11       | 27    |
| z24 | Random Matrix Theory In Statistics: A Review                                                                                | 53       | 148   |
| z24 | Estimating Structured High-Dimensional Covariance And Precision Matrices:<br>Optimal Rates And Adaptive Estimation          | 63       | 96    |
| z24 | Recent Developments In High Dimensional Covariance Estimation And Its<br>Related Issues, A Review                           | 2        | 54    |
| z24 | Large Covariance Estimation By Thresholding Principal Orthogonal<br>Complements                                             | 214      | 63    |
| z24 | An Overview Of The Estimation Of Large Covariance And Precision Matrices                                                    | 58       | 58    |
| z25 | Bayesian Computation: A Summary Of The Current State, And Samples<br>Backwards And Forwards                                 | 20       | 101   |
| z25 | The Hastings Algorithm At Fifty                                                                                             | 7        | 78    |
| z25 | A Short History Of Markov Chain Monte Carlo: Subjective Recollections From<br>Incomplete Data                               | 17       | 68    |
| z25 | Riemann Manifold Langevin And Hamiltonian Monte Carlo Methods                                                               | 208      | 70    |
| z25 | Unbiased Markov Chain Monte Carlo Methods With Couplings                                                                    | 24       | 77    |
| z26 | Nonparametric Inference With Generalized Likelihood Ratio Tests                                                             | 46       | 67    |
| z26 | Statistical Inference In Partially-Varying-Coefficient Single-Index Model                                                   | 26       | 27    |
| z26 | Varying Coefficient Regression Models: A Review And New Developments                                                        | 40       | 64    |
| z26 | Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially<br>Linear Models                              | 360      | 24    |
| z26 | Efficient Estimation Of A Semiparametric Partially Linear Varying Coefficient<br>Model                                      | 96       | 26    |

| ID  | Title                                                                                                                                                 | Cited by | Cites |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| z27 | Joint Modeling Of Longitudinal And Time-To-Event Data: An Overview                                                                                    | 341      | 36    |
| z27 | Missing Data Methods In Longitudinal Studies: A Review                                                                                                | 76       | 79    |
| z27 | Joint Modeling Of Longitudinal And Survival Data Via A Common Frailty                                                                                 | 22       | 21    |
| z27 | Joint Longitudinal-Survival-Cure Models And Their Application To Prostate Cancer                                                                      | 64       | 34    |
| z27 | Latent Variable Modelling: A Survey                                                                                                                   | 20       | 67    |
| z28 | Causal Inference Using Potential Outcomes: Design, Modeling, Decisions                                                                                | 175      | 32    |
| z28 | Instrumental Variables: An Econometrician's Perspective                                                                                               | 25       | 88    |
| z28 | Causal Inference: A Missing Data Perspective                                                                                                          | 21       | 104   |
| z28 | Defining And Estimating Intervention Effects For Groups That Will Develop An<br>Auxiliary Outcome                                                     | 39       | 29    |
| z28 | A Refreshing Account Of Principal Stratification                                                                                                      | 18       | 34    |
| z29 | Modified Liu-Type Estimator Based On (Rk) Class Estimator                                                                                             | 17       | 18    |
| z29 | A Simulation Study On Some Restricted Ridge Regression Estimators                                                                                     | 12       | 17    |
| z29 | Performance Of Kibria's Method For The Heteroscedastic Ridge Regression<br>Model: Some Monte Carlo Evidence                                           | 20       | 24    |
| z29 | Combining The Unrestricted Estimators Into A Single Estimator And A<br>Simulation Study On The Unrestricted Estimators                                | 3        | 19    |
| z29 | Consistent Estimation Approach To Tackling Collinearity And Berkson-Type<br>Measurement Error In Linear Regression Using Adjusted Wald-Type Estimator | 2        | 21    |
| z30 | Piecewise Linear Approximations For Cure Rate Models And Associated<br>Inferential Issues                                                             | 20       | 44    |
| z30 | Proportional Hazards Under Conway-Maxwell-Poisson Cure Rate Model And<br>Associated Inference                                                         | 8        | 31    |
| z30 | A Support Vector Machine-Based Cure Rate Model For Interval Censored Data                                                                             | 0        | 50    |
| z30 | A Flexible Family Of Transformation Cure Rate Models                                                                                                  | 13       | 39    |
| z30 | A New Approach To Modeling The Cure Rate In The Presence Of Interval<br>Censored Data                                                                 | 2        | 45    |

### E Sensitivity to rank

This section contains supplementary results for estimates using varying rank k.

#### E.1 Y keywords as rank varies

Table 8: Keywords for Y (incoming citation) factors - k = 5,  $\ell_z$  = 1e+05,  $\ell_y$  = 50000

| Factor Name | Top words                                                    | ID |
|-------------|--------------------------------------------------------------|----|
| y1          | selection, lasso, variable, regression, via, dimensional     | y1 |
| y2          | dimension, models, skew, mixture, model, selection           | y2 |
| y3          | survival, data, regression, censored, semiparametric, models | y3 |
| y4          | false, discovery, multiple, testing, rate, high              | y4 |
| y5          | bayesian, dirichlet, models, spatial, priors, mixture        | y5 |

Table 9: Keywords for Y (incoming citation) factors - k = 10,  $\ell_z$  = 1e+05,  $\ell_y$  = 50000

| Factor Name | Top words                                                         | ID  |
|-------------|-------------------------------------------------------------------|-----|
| y01         | selection, lasso, variable, regression, via, penalized            | y01 |
| y02         | bayesian, models, spatial, mixed, longitudinal, monte             | y02 |
| y03         | covariance, graphical, sparse, high, dimensional, lasso           | y03 |
| y04         | survival, censored, hazards, proportional, data, regression       | y04 |
| y05         | mixture, model, clustering, skew, selection, mixtures             | y05 |
| y06         | false, discovery, multiple, testing, rate, controlling            | y06 |
| y07         | propensity, causal, score, treatment, missing, effects            | y07 |
| y08         | dimension, reduction, regression, sliced, inverse, sufficient     | y08 |
| y09         | bayesian, dirichlet, nonparametric, mixture, mixtures, priors     | y09 |
| y10         | likelihood, empirical, models, regression, longitudinal, quantile | y10 |

Table 10: Keywords for Y (incoming citation) factors - k = 20,  $\ell_z$  = 1e+05,  $\ell_y$  = 50000

| Factor Name | Top words                                                           | ID  |
|-------------|---------------------------------------------------------------------|-----|
| y01         | selection, variable, penalized, oracle, nonconcave, lasso           | y01 |
| y02         | screening, dimensional, ultrahigh, feature, independence, high      | y02 |
| y03         | bayesian, models, complexity, disease, longitudinal, model          | y03 |
| y04         | high, dimensional, lasso, selection, models, sparse                 | y04 |
| y05         | survival, censored, hazards, proportional, cox, data                | y05 |
| y06         | model, clustering, mixture, dimension, selection, mixtures          | y06 |
| y07         | false, discovery, multiple, testing, rate, controlling              | y07 |
| y08         | propensity, causal, treatment, score, observational, effects        | y08 |
| y09         | dirichlet, bayesian, nonparametric, mixture, mixtures, priors       | y09 |
| y10         | covariance, graphical, sparse, estimation, high, dimensional        | y10 |
| y11         | dimension, reduction, regression, sliced, inverse, sufficient       | y11 |
| y12         | longitudinal, data, models, generalized, linear, estimating         | y12 |
| y13         | spatial, gaussian, models, datasets, covariance, large              | y13 |
| y14         | empirical, likelihood, confidence, ratio, semiparametric, partially | y14 |
| y15         | lasso, selection, regression, via, shrinkage, regularization        | y15 |
| y16         | functional, regression, longitudinal, linear, principal, data       | y16 |
| y17         | skew, normal, distributions, multivariate, distribution, t          | y17 |
| y18         | quantile, regression, quantiles, estimation, censored, models       | y18 |
| y19         | missing, data, imputation, longitudinal, nonignorable, models       | y19 |

| Table 11: Keywords for Y (incoming citation) factors - $k = 40$ , $\ell_z = 1e+05$ , $\ell_y = 5$ | 60000 |
|---------------------------------------------------------------------------------------------------|-------|
|---------------------------------------------------------------------------------------------------|-------|

| Factor Name | Top words                                                         | ID  |
|-------------|-------------------------------------------------------------------|-----|
| y01         | lasso, selection, variable, oracle, elastic, net                  | y01 |
| y02         | screening, dimensional, ultrahigh, feature, independence, high    | y02 |
| y03         | coordinate, descent, regularization, paths, selection, lasso      | y03 |
| y04         | bayesian, models, complexity, disease, fit, model                 | y04 |
| y05         | high, dimensional, lasso, supersaturated, selection, confidence   | y05 |
| y06         | survival, censored, hazards, proportional, regression, cox        | y06 |
| y07         | model, clustering, mixture, selection, dimension, mixtures        | y07 |
| y08         | false, discovery, multiple, rate, testing, controlling            | y08 |
| y09         | missing, estimation, semiparametric, treatment, sampling, data    | y09 |
| y10         | graphical, covariance, sparse, lasso, estimation, high            | y10 |
| y11         | dirichlet, bayesian, nonparametric, mixture, mixtures, priors     | y11 |
| y12         | dimension, reduction, regression, sliced, inverse, sufficient     | y12 |
| y13         | empirical, likelihood, confidence, ratio, intervals, regions      | y13 |
| y14         | propensity, score, causal, effects, observational, treatment      | y14 |
| y15         | spatial, covariance, datasets, large, gaussian, temporal          | y15 |
| y16         | longitudinal, data, generalized, models, estimating, binary       | y16 |
| y17         | functional, regression, principal, data, linear, longitudinal     | y17 |
| y18         | lasso, selection, shrinkage, regression, via, variable            | y18 |
| y19         | skew, normal, distributions, multivariate, distribution, t        | y19 |
| y20         | quantile, regression, quantiles, censored, bayesian, median       | y20 |
| y21         | missing, imputation, data, nonignorable, multiple, longitudinal   | y21 |
| y22         | bayesian, selection, variable, priors, posterior, prior           | y22 |
| y23         | models, spatial, mixed, bayesian, generalized, approximate        | y23 |
| y24         | extreme, extremes, tail, max, value, stable                       | y24 |
| y25         | change, point, detection, series, charts, control                 | y25 |
| y26         | trials, clinical, adaptive, multiple, sequential, group           | y26 |
| y27         | coefficient, models, varying, index, single, partially            | y27 |
| y28         | covariance, matrices, high, dimensional, large, matrix            | y28 |
| y29         | monte, carlo, markov, metropolis, bayesian, chain                 | y29 |
| y30         | longitudinal, joint, mixed, models, data, effects                 | y30 |
| y31         | ridge, regression, biased, estimators, estimator, liu             | y31 |
| y32         | garch, series, autoregressive, time, models, volatility           | y32 |
| y33         | cure, survival, mixture, rate, model, censored                    | y33 |
| y34         | treatment, regimes, causal, trials, individualized, learning      | y34 |
| y35         | splines, smoothing, additive, regression, penalized, spline       | y35 |
| y36         | bayesian, bayes, factors, selection, model, priors                | y36 |
| y37         | depth, functional, multivariate, robust, data, outlier            | y37 |
| y38         | recurrent, events, event, data, semiparametric, failure           | y38 |
| y39         | selection, variable, penalized, nonconcave, oracle, likelihood    | y39 |
| y40         | bootstrap, jackknife, nonparametric, lecture, density, estimation | y40 |

Table 12: Keywords for Z (outgoing citation) factors - k = 5,  $\ell_z$  = 1e+05,  $\ell_y$  = 50000

| Factor Name | Top words                                                       | ID |
|-------------|-----------------------------------------------------------------|----|
| z1          | selection, variable, high, dimensional, lasso, regression       | z1 |
| z2          | models, model, selection, bayesian, clustering, data            | z2 |
| z3          | data, survival, semiparametric, hazards, longitudinal, censored | z3 |
| z4          | false, discovery, high, multiple, testing, dimensional          | z4 |
| z5          | bayesian, models, spatial, modeling, dirichlet, hierarchical    | z5 |

Table 13: Keywords for Z (outgoing citation) factors - k = 10,  $\ell_z$  = 1e+05,  $\ell_y$  = 50000

| Factor Name | Top words                                                               | ID          |
|-------------|-------------------------------------------------------------------------|-------------|
| z01         | selection, variable, high, dimensional, regression, lasso               | z01         |
| z02         | bayesian, models, spatial, data, longitudinal, modeling                 | z02         |
| z03         | high, graphical, dimensional, sparse, covariance, matrix                | z03         |
| z04         | survival, hazards, data, censored, cox, model                           | <b>z</b> 04 |
| z05         | selection, model, clustering, mixture, models, skew                     | z05         |
| z06         | false, discovery, testing, multiple, rate, high                         | z06         |
| z07         | causal, missing, propensity, treatment, score, effects                  | z07         |
| z08         | dimension, reduction, sufficient, index, single, regression             | z08         |
| z09         | bayesian, dirichlet, nonparametric, mixture, clustering, semiparametric | z09         |
| z10         | empirical, likelihood, quantile, models, longitudinal, data             | z1(         |

Table 14: Keywords for Z (outgoing citation) factors - k = 20,  $\ell_z = 1e+05$ ,  $\ell_y = 50000$ 

| Factor Name | Top words                                                               | ID  |
|-------------|-------------------------------------------------------------------------|-----|
| z01         | selection, variable, dimensional, high, penalized, regression           | z0. |
| z02         | screening, adaptive, dimensional, clinical, trials, ultrahigh           | z02 |
| z03         | bayesian, models, spatial, model, data, longitudinal                    | z0  |
| z04         | high, dimensional, selection, lasso, models, sparse                     | z0  |
| z05         | survival, hazards, censored, data, cox, model                           | z0  |
| z06         | selection, clustering, model, mixture, models, mixtures                 | z0  |
| z07         | false, discovery, testing, multiple, rate, microarray                   | z0  |
| z08         | causal, treatment, propensity, score, effects, observational            | z0  |
| z09         | bayesian, dirichlet, nonparametric, mixture, clustering, semiparametric | z0  |
| z10         | graphical, high, covariance, dimensional, sparse, matrix                | z1  |
| z11         | dimension, reduction, sufficient, index, single, inverse                | z1  |
| z12         | longitudinal, data, models, generalized, mixed, binary                  | z1  |
| z13         | spatial, models, temporal, spatio, bayesian, gaussian                   | z1  |
| z14         | empirical, likelihood, inference, partially, missing, models            | z1  |
| z15         | selection, lasso, regression, sparse, high, variable                    | z1  |
| z16         | functional, regression, data, longitudinal, varying, linear             | z1  |
| z17         | skew, normal, distributions, multivariate, t, distribution              | z1  |
| z18         | quantile, regression, models, varying, index, quantiles                 | z1  |
| z19         | missing, data, longitudinal, imputation, with, nonignorable             | z1  |
| z20         | bayesian, selection, variable, models, priors, model                    | z2  |

Table 15: Keywords for Z (outgoing citation) factors - k = 40,  $\ell_z$  = 1e+05,  $\ell_y$  = 50000

| Factor Name | Top words                                                               | ID  |
|-------------|-------------------------------------------------------------------------|-----|
| z01         | selection, lasso, variable, high, dimensional, sparse                   | z01 |
| z02         | screening, dimensional, high, ultrahigh, feature, variable              | z02 |
| z03         | adaptive, clinical, trials, sequential, designs, group                  | z03 |
| z04         | bayesian, models, spatial, model, data, hierarchical                    | z04 |
| z05         | high, dimensional, supersaturated, designs, selection, regression       | z05 |
| z06         | survival, hazards, censored, cox, data, proportional                    | z06 |
| z07         | selection, clustering, model, mixture, models, mixtures                 | z07 |
| z08         | false, discovery, testing, multiple, rate, microarray                   | z08 |
| z09         | missing, treatment, estimation, with, data, robust                      | z09 |
| z10         | graphical, high, dimensional, sparse, lasso, models                     | z10 |
| z11         | bayesian, dirichlet, nonparametric, mixture, clustering, semiparametric | z11 |
| z12         | dimension, reduction, sufficient, index, inverse, sliced                | z12 |
| z13         | empirical, likelihood, inference, missing, partially, models            | z13 |
| z14         | propensity, causal, score, treatment, effects, observational            | z14 |
| z15         | spatial, temporal, spatio, gaussian, covariance, modeling               | z15 |
| z16         | longitudinal, data, binary, generalized, estimating, clustered          | z16 |
| z17         | functional, regression, data, linear, principal, longitudinal           | z17 |
| z18         | selection, high, lasso, sparse, dimensional, variable                   | z18 |
| z19         | skew, normal, distributions, multivariate, t, distribution              | z19 |
| z20         | quantile, regression, quantiles, composite, censored, expectile         | z20 |
| z21         | missing, imputation, data, longitudinal, with, nonignorable             | z21 |
| z22         | bayesian, selection, variable, priors, regression, shrinkage            | z22 |
| z23         | mixed, models, spatial, effects, bayesian, data                         | z23 |
| z24         | extreme, extremes, tail, copula, dependence, value                      | z24 |
| z25         | change, detection, point, monitoring, high, series                      | z25 |
| z26         | multiple, trials, clinical, adaptive, testing, procedures               | z26 |
| z27         | varying, coefficient, index, models, single, partially                  | z27 |
| z28         | high, dimensional, covariance, matrices, matrix, factor                 | z28 |
| z29         | bayesian, monte, carlo, mcmc, metropolis, markov                        | z29 |
| z30         | longitudinal, joint, mixed, data, models, effects                       | z30 |
| z31         | ridge, regression, estimator, liu, linear, model                        | z31 |
| z32         | garch, volatility, models, series, time, autoregressive                 | z32 |
| z33         | cure, model, survival, rate, data, mixture                              | z33 |
| z34         | treatment, causal, effects, instrumental, regimes, randomized           | z34 |
| z35         | splines, penalized, additive, models, regression, spline                | z35 |
| z36         | bayesian, model, selection, models, averaging, bayes                    | z36 |
| z37         | depth, functional, robust, multivariate, based, data                    | z37 |
| z38         | recurrent, event, data, events, semiparametric, terminal                | z38 |
| z39         | selection, variable, high, dimensional, penalized, regression           | z39 |
| z40         | bootstrap, censored, estimation, data, nonparametric, inference         | z40 |

E.2 Z keywords as rank varies

# E.3 Mixing matrix as rank varies

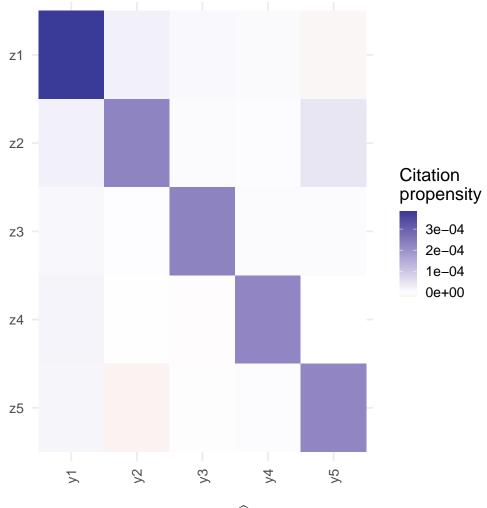



Figure 7:  $\widehat{B}$  when k = 5

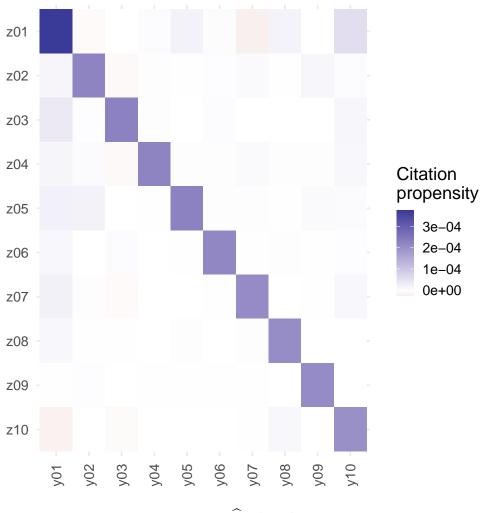



Figure 8:  $\widehat{B}$  when k=10

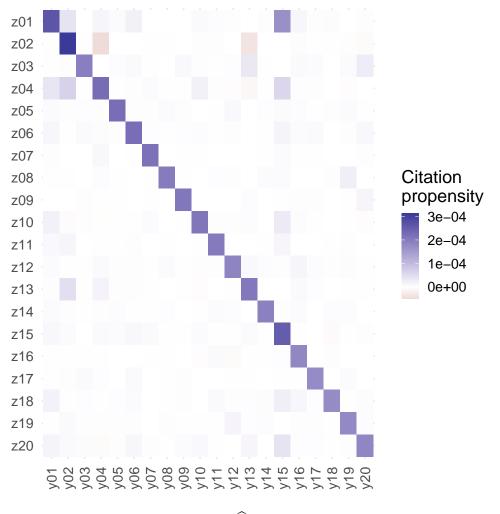



Figure 9:  $\widehat{B}$  when k = 20

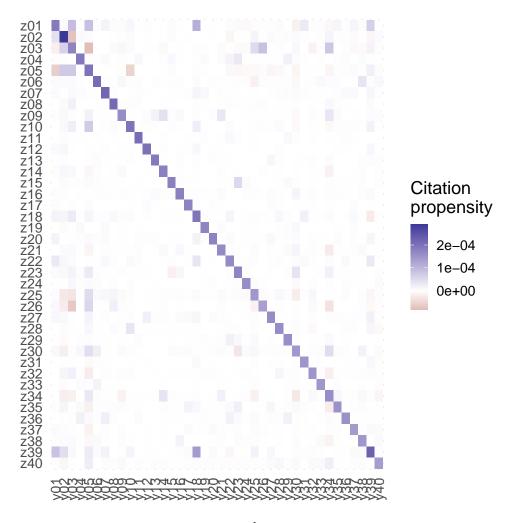



Figure 10:  $\widehat{B}$  when k = 40

### E.4 Y hubs as rank varies

Table 16: Y (incoming citation) factor hubs - k = 5,  $\ell_z$  = 1e+05,  $\ell_y$  = 50000

| ID | Title                                                                                           | Cited by | Cites |
|----|-------------------------------------------------------------------------------------------------|----------|-------|
| y1 | Regression Shrinkage And Selection Via The Lasso                                                | 4759     | 8     |
| y1 | Variable Selection Via Nonconcave Penalized Likelihood And Its Oracle                           | 2804     | 14    |
|    | Properties                                                                                      |          |       |
| y1 | The Adaptive Lasso And Its Oracle Properties                                                    | 2052     | 14    |
| y2 | Estimating Dimension Of A Model                                                                 | 3727     | 3     |
| y2 | Bayes Factors                                                                                   | 1553     | 56    |
| y2 | Bayesian Measures Of Model Complexity And Fit                                                   | 2107     | 38    |
| y3 | Regression Models And Life-Tables                                                               | 4087     | 21    |
| y3 | Cox Regression-Model For Counting-Processes - A Large Sample Study                              | 1218     | 13    |
| y3 | Longitudinal Data-Analysis Using Generalized Linear-Models                                      | 2624     | 11    |
| y4 | Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing | 2025     | 9     |
| y4 | The Control Of The False Discovery Rate In Multiple Testing Under Dependency                    | 644      | 21    |
| y4 | A Direct Approach To False Discovery Rates                                                      | 555      | 5     |

Table 16: Y (incoming citation) factor hubs - k = 5,  $\ell_z$  = 1e+05,  $\ell_y$  = 50000 (continued)

| ID             | Title                                                                                                                                              | Cited by              | Cites      |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|
| y5<br>y5<br>y5 | Bayesian Measures Of Model Complexity And Fit<br>Bayesian Analysis Of Some Nonparametric Problems<br>A Constructive Definition Of Dirichlet Priors | $2107 \\ 1373 \\ 711$ | 38 $4$ $6$ |

Table 17: Y (incoming citation) factor hubs - k = 10,  $\ell_{\rm z}$  = 1e+05,  $\ell_{\rm y}$  = 50000

| ID  | Title                                                                                                             | Cited by | Cites |
|-----|-------------------------------------------------------------------------------------------------------------------|----------|-------|
| y01 | Regression Shrinkage And Selection Via The Lasso                                                                  | 4759     | 8     |
| y01 | Variable Selection Via Nonconcave Penalized Likelihood And Its Oracle<br>Properties                               | 2804     | 14    |
| y01 | The Adaptive Lasso And Its Oracle Properties                                                                      | 2052     | 14    |
| y02 | Bayesian Measures Of Model Complexity And Fit                                                                     | 2107     | 38    |
| y02 | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations    | 812      | 109   |
| y02 | Prior Distributions For Variance Parameters In Hierarchical Models(Comment<br>On An Article By Browne And Draper) | 906      | 28    |
| y03 | Sparse Inverse Covariance Estimation With The Graphical Lasso                                                     | 754      | 2     |
| y03 | High-Dimensional Graphs And Variable Selection With The Lasso                                                     | 885      | 12    |
| y03 | Model Selection And Estimation In The Gaussian Graphical Model                                                    | 477      | 8     |
| y04 | Regression Models And Life-Tables                                                                                 | 4087     | 21    |
| y04 | Cox Regression-Model For Counting-Processes - A Large Sample Study                                                | 1218     | 13    |
| y04 | Nonparametric-Estimation From Incomplete Observations                                                             | 1853     | 11    |
| y05 | Estimating Dimension Of A Model                                                                                   | 3727     | 3     |
| y05 | Bayes Factors                                                                                                     | 1553     | 56    |
| y05 | Model-Based Clustering, Discriminant Analysis, And Density Estimation                                             | 594      | 43    |
| y06 | Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing                   | 2025     | 9     |
| y06 | The Control Of The False Discovery Rate In Multiple Testing Under Dependency                                      | 644      | 21    |
| y06 | A Direct Approach To False Discovery Rates                                                                        | 555      | 5     |
| y07 | The Central Role Of The Propensity Score In Observational Studies For Causal Effects                              | 1497     | 11    |
| y07 | Inference And Missing Data                                                                                        | 1905     | 9     |
| y07 | Estimation Of Regression-Coefficients When Some Regressors Are Not Always Observed                                | 1034     | 21    |
| y08 | Sliced Inverse Regression For Dimension Reduction                                                                 | 930      | 29    |
| y08 | Sliced Inverse Regression For Dimension Reduction - Comment                                                       | 488      | 4     |
| y08 | An Adaptive Estimation Of Dimension Reduction Space                                                               | 472      | 25    |
| y09 | Bayesian Analysis Of Some Nonparametric Problems                                                                  | 1373     | 4     |
| y09 | A Constructive Definition Of Dirichlet Priors                                                                     | 711      | 6     |
| y09 | Bayesian Density-Estimation And Inference Using Mixtures                                                          | 724      | 12    |
| y10 | Empirical Likelihood Ratio Confidence-Intervals For A Single Functional                                           | 1115     | 6     |
| y10 | Empirical Likelihood Ratio Confidence-Regions                                                                     | 913      | 14    |
| y10 | Empirical Likelihood And General Estimating Equations                                                             | 877      | 17    |

Table 18: Y (incoming citation) factor hubs - k = 20,  $\ell_z$  = 1e+05,  $\ell_y$  = 50000

| ID  | Title                                                                            | Cited by | Cites |
|-----|----------------------------------------------------------------------------------|----------|-------|
| y01 | Variable Selection Via Nonconcave Penalized Likelihood And Its Oracle Properties | 2804     | 14    |

| ID          | Title                                                                                                                                | Cited by      | Cites           |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|
| y01<br>y01  | The Adaptive Lasso And Its Oracle Properties<br>Nearly Unbiased Variable Selection Under Minimax Concave Penalty                     | $2052 \\ 987$ | $\frac{14}{36}$ |
| -           | • •                                                                                                                                  |               |                 |
| /02         | Sure Independence Screening For Ultrahigh Dimensional Feature Space                                                                  | 905<br>207    | 33              |
| 02          | Feature Screening Via Distance Correlation Learning                                                                                  | 327           | 22              |
| /02         | Sure Independence Screening In Generalized Linear Models With<br>Np-Dimensionality                                                   | 305           | 24              |
| /03         | Bayesian Measures Of Model Complexity And Fit                                                                                        | 2107          | 3               |
| /03         | Prior Distributions For Variance Parameters In Hierarchical Models(Comment<br>On An Article By Browne And Draper)                    | 906           | 2               |
| y03         | Bayesian Image-Restoration, With 2 Applications In Spatial Statistics                                                                | 797           |                 |
| /04         | On Asymptotically Optimal Confidence Regions And Tests For<br>High-Dimensional Models                                                | 360           | 3               |
| y04         | Confidence Intervals For Low Dimensional Parameters In High Dimensional<br>Linear Models                                             | 350           | 3               |
| y04         | Simultaneous Analysis Of Lasso And Dantzig Selector                                                                                  | 617           | 1               |
| 705         | Regression Models And Life-Tables                                                                                                    | 4087          | 2               |
| /05         | Cox Regression-Model For Counting-Processes - A Large Sample Study                                                                   | 1218          | 1               |
| 705         | Nonparametric-Estimation From Incomplete Observations                                                                                | 1853          | 1               |
| 706         | Estimating Dimension Of A Model                                                                                                      | 3727          |                 |
| 706         | Model-Based Clustering, Discriminant Analysis, And Density Estimation                                                                | 594           | 4               |
| /06         | Some Comments On Cp                                                                                                                  | 770           | 1               |
| /07         | Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing                                      | 2025          |                 |
| /07         | The Control Of The False Discovery Rate In Multiple Testing Under Dependency                                                         | 644           | 2               |
| /07         | A Direct Approach To False Discovery Rates                                                                                           | 555           |                 |
| /08         | The Central Role Of The Propensity Score In Observational Studies For Causal Effects                                                 | 1497          | 1               |
| y08         | Estimation Of Regression-Coefficients When Some Regressors Are Not Always Observed                                                   | 1034          | 2               |
| y08         | Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data      | 416           | 2               |
| y09         | Bayesian Analysis Of Some Nonparametric Problems                                                                                     | 1373          |                 |
| 709         | A Constructive Definition Of Dirichlet Priors                                                                                        | 711           |                 |
| /09         | Bayesian Density-Estimation And Inference Using Mixtures                                                                             | 724           | 1               |
| y10         | Sparse Inverse Covariance Estimation With The Graphical Lasso                                                                        | 754           |                 |
| y10         | High-Dimensional Graphs And Variable Selection With The Lasso                                                                        | 885           | 1               |
| /10         | Model Selection And Estimation In The Gaussian Graphical Model                                                                       | 477           |                 |
| y11         | Sliced Inverse Regression For Dimension Reduction                                                                                    | 930           | 2               |
| y11         | Sliced Inverse Regression For Dimension Reduction - Comment                                                                          | 488           |                 |
| /11         | An Adaptive Estimation Of Dimension Reduction Space                                                                                  | 472           | 2               |
| $\sqrt{12}$ | Longitudinal Data-Analysis Using Generalized Linear-Models                                                                           | 2624          | 1               |
| y12         | Approximate Inference In Generalized Linear Mixed Models                                                                             | 1345          | 4               |
| /12         | Random-Effects Models For Longitudinal Data                                                                                          | 1540          | 1               |
| /13         | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                       | 812           | 10              |
| y13         | An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach | 512           | 5               |
| y13         | Stationary Process Approximation For The Analysis Of Large Spatial Datasets                                                          | 380           | 1               |
| y14         | Empirical Likelihood Ratio Confidence-Intervals For A Single Functional                                                              | 1115          |                 |
| y14         | Empirical Likelihood Ratio Confidence-Regions                                                                                        | 913           | 1               |
| y14         | Empirical Likelihood And General Estimating Equations                                                                                | 877           | 1               |
| y15         | Regression Shrinkage And Selection Via The Lasso                                                                                     | 4759          |                 |
|             |                                                                                                                                      |               |                 |

Table 18: Y (incoming citation) factor hubs - k = 20,  $\ell_z = 1e+05$ ,  $\ell_y = 50000$  (continued)

| ID  | Title                                                                                    | Cited by | Cites |
|-----|------------------------------------------------------------------------------------------|----------|-------|
| y15 | Regularization And Variable Selection Via The Elastic Net                                | 1584     | 11    |
| y15 | Regularization Paths For Generalized Linear Models Via Coordinate Descent                | 1124     | 15    |
| y16 | Functional Data Analysis For Sparse Longitudinal Data                                    | 640      | 24    |
| y16 | Functional Linear Regression Analysis For Longitudinal Data                              | 342      | 19    |
| y16 | Flexible Smoothing With B-Splines And Penalties                                          | 1074     | 7     |
| y17 | A Class Of Distributions Which Includes The Normal Ones                                  | 886      | 5     |
| y17 | The Multivariate Skew-Normal Distribution                                                | 632      | 8     |
| y17 | Statistical Applications Of The Multivariate Skew Normal Distribution                    | 490      | 6     |
| y18 | Regression Quantiles                                                                     | 1603     | 21    |
| y18 | Bayesian Quantile Regression                                                             | 286      | 7     |
| y18 | Composite Quantile Regression And The Oracle Model Selection Theory                      | 291      | 6     |
| y19 | Inference And Missing Data                                                               | 1905     | 9     |
| y19 | Estimation Of Regression-Coefficients When Some Regressors Are Not Always<br>Observed    | 1034     | 21    |
| y19 | A Generalization Of Sampling Without Replacement From A Finite Universe                  | 1160     | 5     |
| y20 | Bayes Factors                                                                            | 1553     | 56    |
| y20 | Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model<br>Determination | 1193     | 12    |
| y20 | Variable Selection Via Gibbs Sampling                                                    | 781      | 8     |

Table 18: Y (incoming citation) factor hubs - k = 20,  $\ell_z = 1e+05$ ,  $\ell_y = 50000$  (continued)

Table 19: Y (incoming citation) factor hubs - k = 40,  $\ell_{\rm z}$  = 1e+05,  $\ell_{\rm y}$  = 50000

| ID  | Title                                                                                                             | Cited by | Cites |
|-----|-------------------------------------------------------------------------------------------------------------------|----------|-------|
| y01 | The Adaptive Lasso And Its Oracle Properties                                                                      | 2052     | 14    |
| y01 | Regularization And Variable Selection Via The Elastic Net                                                         | 1584     | 11    |
| y01 | Least Angle Regression                                                                                            | 1259     | 10    |
| y02 | Sure Independence Screening For Ultrahigh Dimensional Feature Space                                               | 905      | 33    |
| y02 | Feature Screening Via Distance Correlation Learning                                                               | 327      | 22    |
| y02 | Sure Independence Screening In Generalized Linear Models With Np-Dimensionality                                   | 305      | 24    |
| y03 | Regularization Paths For Generalized Linear Models Via Coordinate Descent                                         | 1124     | 15    |
| y03 | Nearly Unbiased Variable Selection Under Minimax Concave Penalty                                                  | 987      | 36    |
| y03 | Regularization And Variable Selection Via The Elastic Net                                                         | 1584     | 11    |
| y04 | Bayesian Measures Of Model Complexity And Fit                                                                     | 2107     | 38    |
| y04 | Prior Distributions For Variance Parameters In Hierarchical Models(Comment<br>On An Article By Browne And Draper) | 906      | 28    |
| y04 | Bayesian Image-Restoration, With 2 Applications In Spatial Statistics                                             | 797      | 3     |
| y05 | On Asymptotically Optimal Confidence Regions And Tests For<br>High-Dimensional Models                             | 360      | 36    |
| y05 | Confidence Intervals For Low Dimensional Parameters In High Dimensional<br>Linear Models                          | 350      | 33    |
| y05 | Simultaneous Analysis Of Lasso And Dantzig Selector                                                               | 617      | 16    |
| y06 | Regression Models And Life-Tables                                                                                 | 4087     | 21    |
| y06 | Nonparametric-Estimation From Incomplete Observations                                                             | 1853     | 11    |
| y06 | Partial Likelihood                                                                                                | 933      | 6     |
| y07 | Estimating Dimension Of A Model                                                                                   | 3727     | 3     |
| y07 | Model-Based Clustering, Discriminant Analysis, And Density Estimation                                             | 594      | 43    |
| y07 | Some Comments On Cp                                                                                               | 770      | 18    |
| y08 | Controlling The False Discovery Rate - A Practical And Powerful Approach To Multiple Testing                      | 2025     | 9     |
| y08 | The Control Of The False Discovery Rate In Multiple Testing Under Dependency                                      | 644      | 21    |

Table 19: Y (incoming citation) factor hubs - k = 40,  $\ell_z = 1e+05$ ,  $\ell_y = 50000$  (continued)

| ID         | Title                                                                                                                           | Cited by     | Cites     |
|------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| y08        | A Direct Approach To False Discovery Rates                                                                                      | 555          | 5         |
| y09        | Estimation Of Regression-Coefficients When Some Regressors Are Not Always Observed                                              | 1034         | 21        |
| y09        | A Generalization Of Sampling Without Replacement From A Finite Universe                                                         | 1160         | 5         |
| y09        | Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data | 416          | 28        |
| y10        | Sparse Inverse Covariance Estimation With The Graphical Lasso                                                                   | 754          | 2         |
| y10<br>y10 | High-Dimensional Graphs And Variable Selection With The Lasso<br>Model Selection And Estimation In The Gaussian Graphical Model | $885 \\ 477$ | $12 \\ 8$ |
| y11        | Bayesian Analysis Of Some Nonparametric Problems                                                                                | 1373         | 4         |
| y11        | A Constructive Definition Of Dirichlet Priors                                                                                   | 711          | 6         |
| y11        | Bayesian Density-Estimation And Inference Using Mixtures                                                                        | 724          | 12        |
| y12        | Sliced Inverse Regression For Dimension Reduction                                                                               | 930          | 29        |
| y12        | Sliced Inverse Regression For Dimension Reduction - Comment                                                                     | 488          | 4         |
| y12        | An Adaptive Estimation Of Dimension Reduction Space                                                                             | 472          | 25        |
| y13        | Empirical Likelihood Ratio Confidence-Intervals For A Single Functional                                                         | 1115         | 6         |
| y13        | Empirical Likelihood Ratio Confidence-Regions                                                                                   | 913          | 14        |
| y13        | Empirical Likelihood And General Estimating Equations                                                                           | 877          | 17        |
| y14        | The Central Role Of The Propensity Score In Observational Studies For Causal Effects                                            | 1497         | 11        |
| y14        | Matching Methods For Causal Inference: A Review And A Look Forward                                                              | 272          | 66        |
| y14        | Reducing Bias In Observational Studies Using Subclassification On The Propensity Score                                          | 313          | 5         |
| y15        | Stationary Process Approximation For The Analysis Of Large Spatial Datasets                                                     | 380          | 18        |
| y15        | Fixed Rank Kriging For Very Large Spatial Data Sets                                                                             | 347          | 15        |
| y15        | Hierarchical Nearest-Neighbor Gaussian Process Models For Large Geostatistical Datasets                                         | 190          | 28        |
| y16        | Longitudinal Data-Analysis Using Generalized Linear-Models                                                                      | 2624         | 11        |
| y16        | Improving Generalised Estimating Equations Using Quadratic Inference<br>Functions                                               | 235          | 13        |
| y16        | Longitudinal Data-Analysis For Discrete And Continuous Outcomes                                                                 | 516          | 16        |
| y17        | Functional Data Analysis For Sparse Longitudinal Data                                                                           | 640          | 24        |
| y17        | Functional Linear Regression Analysis For Longitudinal Data                                                                     | 342          | 19        |
| y17        | Methodology And Convergence Rates For Functional Linear Regression                                                              | 295          | 12        |
| y18        | Regression Shrinkage And Selection Via The Lasso                                                                                | 4759         | 8         |
| y18        | Variable Selection Via Nonconcave Penalized Likelihood And Its Oracle<br>Properties                                             | 2804         | 14        |
| y18        | The Bayesian Lasso                                                                                                              | 568          | 11        |
| y19        | A Class Of Distributions Which Includes The Normal Ones                                                                         | 886          | 5         |
| y19        | The Multivariate Skew-Normal Distribution                                                                                       | 632          | 8         |
| y19        | Statistical Applications Of The Multivariate Skew Normal Distribution                                                           | 490          | 6         |
| y20        | Regression Quantiles                                                                                                            | 1603         | 21        |
| y20        | Bayesian Quantile Regression                                                                                                    | 286          | 7         |
| y20        | Composite Quantile Regression And The Oracle Model Selection Theory                                                             | 291          | 6         |
| y21        | Inference And Missing Data                                                                                                      | 1905         | 9         |
| y21        | Mice: Multivariate Imputation By Chained Equations In R                                                                         | 292          | 34        |
| y21        | Pattern-Mixture Models For Multivariate Incomplete Data                                                                         | 352          | 14        |
| y22        | Variable Selection Via Gibbs Sampling                                                                                           | 781          | 8         |
| y22        | The Bayesian Lasso                                                                                                              | 568          | 11        |
| y22        | The Horseshoe Estimator For Sparse Signals                                                                                      | 354          | 14        |
| y23        | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                  | 812          | 109       |

| ID  | Title                                                                                                                                | Cited by | Cites |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| y23 | Approximate Inference In Generalized Linear Mixed Models                                                                             | 1345     | 41    |
| y23 | An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach | 512      | 55    |
| y24 | Statistical Modeling Of Spatial Extremes                                                                                             | 188      | 41    |
| y24 | Simple General Approach To Inference About Tail Of A Distribution                                                                    | 642      | 4     |
| y24 | Statistical-Inference Using Extreme Order Statistics                                                                                 | 598      | 1     |
| y25 | Wild Binary Segmentation For Multiple Change-Point Detection                                                                         | 172      | 34    |
| y25 | Optimal Detection Of Changepoints With A Linear Computational Cost                                                                   | 193      | 16    |
| y25 | Continuous Inspection Schemes                                                                                                        | 794      | 9     |
| y26 | Closed Testing Procedures With Special Reference To Ordered Analysis Of Variance                                                     | 557      | 6     |
| y26 | A Simple Sequentially Rejective Multiple Test Procedure                                                                              | 748      | 3     |
| y26 | A Sharper Bonferroni Procedure For Multiple Tests Of Significance                                                                    | 440      | 4     |
| y27 | Generalized Partially Linear Single-Index Models                                                                                     | 522      | 12    |
| y27 | Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially Linear Models                                          | 360      | 24    |
| y27 | Optimal Smoothing In Single-Index Models                                                                                             | 386      | 4     |
| y28 | On The Distribution Of The Largest Eigenvalue In Principal Components<br>Analysis                                                    | 486      | 7     |
| y28 | Covariance Regularization By Thresholding                                                                                            | 399      | 20    |
| y28 | Determining The Number Of Factors In Approximate Factor Models                                                                       | 434      | 5     |
| y29 | Monte-Carlo Sampling Methods Using Markov Chains And Their Applications                                                              | 1431     | 4     |
| y29 | Sampling-Based Approaches To Calculating Marginal Densities                                                                          | 1695     | 9     |
| y29 | Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model Determination                                                | 1193     | 12    |
| y30 | Random-Effects Models For Longitudinal Data                                                                                          | 1540     | 11    |
| y30 | A Joint Model For Survival And Longitudinal Data Measured With Error                                                                 | 409      | 6     |
| y30 | Joint Modeling Of Longitudinal And Time-To-Event Data: An Overview                                                                   | 341      | 36    |
| y31 | Ridge Regression - Biased Estimation For Nonorthogonal Problems                                                                      | 1402     | 7     |
| y31 | Performance Of Some New Ridge Regression Estimators                                                                                  | 233      | 11    |
| y31 | A New Class Of Biased Estimate In Linear-Regression                                                                                  | 257      | 5     |
| y32 | Autoregressive Conditional Heteroscedasticity With Estimates Of The Variance Of United-Kingdom Inflation                             | 1299     | 4     |
| y32 | Conditional Heteroskedasticity In Asset Returns - A New Approach                                                                     | 391      | 9     |
| y32 | Maximum Likelihood Estimation Of Pure Garch And Arma-Garch Processes                                                                 | 191      | 17    |
| y33 | Estimation In A Cox Proportional Hazards Cure Model                                                                                  | 279      | 10    |
| y33 | Survival Curve For Cancer Patients Following Treatment                                                                               | 319      | 3     |
| y33 | A Mixture Model Combining Logistic-Regression With Proportional Hazards Regression                                                   | 258      | 5     |
| y34 | Estimating Individualized Treatment Rules Using Outcome Weighted Learning                                                            | 280      | 20    |
| y34 | A Robust Method For Estimating Optimal Treatment Regimes                                                                             | 210      | 16    |
| y34 | Identification Of Causal Effects Using Instrumental Variables                                                                        | 659      | 15    |
| y35 | Flexible Smoothing With B-Splines And Penalties                                                                                      | 1074     | 7     |
| y35 | Bayesian P-Splines                                                                                                                   | 303      | 27    |
| y35 | Selecting The Number Of Knots For Penalized Splines                                                                                  | 314      | 10    |
| y36 | Bayes Factors                                                                                                                        | 1553     | 56    |
| y36 | Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model<br>Determination                                             | 1193     | 12    |
| y36 | Bayesian Model Averaging: A Tutorial                                                                                                 | 566      | 35    |
| y37 | General Notions Of Statistical Depth Function                                                                                        | 340      | 26    |
| y37 | On A Notion Of Data Depth Based On Random Simplices                                                                                  | 335      | 2     |
| y37 | Multivariate Analysis By Data Depth: Descriptive Statistics, Graphics And<br>Inference                                               | 284      | 34    |

Table 19: Y (incoming citation) factor hubs - k = 40,  $\ell_z = 1e+05$ ,  $\ell_y = 50000$  (continued)

Table 19: Y (incoming citation) factor hubs - k = 40,  $\ell_z = 1e+05$ ,  $\ell_y = 50000$  (continued)

| ID  | Title                                                                         | Cited by | Cites |
|-----|-------------------------------------------------------------------------------|----------|-------|
| v38 | Cox Regression-Model For Counting-Processes - A Large Sample Study            | 1218     | 13    |
| v   |                                                                               |          |       |
| y38 | Semiparametric Regression For The Mean And Rate Functions Of Recurrent Events | 386      | 12    |
| y38 | Regression-Analysis Of Multivariate Incomplete Failure Time Data By Modeling  | 543      | 16    |
|     | Marginal Distributions                                                        |          |       |
| y39 | Variable Selection Via Nonconcave Penalized Likelihood And Its Oracle         | 2804     | 14    |
|     | Properties                                                                    |          |       |
| y39 | Nearly Unbiased Variable Selection Under Minimax Concave Penalty              | 987      | 36    |
| y39 | The Adaptive Lasso And Its Oracle Properties                                  | 2052     | 14    |
| y40 | 1977 Rietz Lecture - Bootstrap Methods - Another Look At The Jackknife        | 1796     | 9     |
| y40 | Nonparametric-Estimation From Incomplete Observations                         | 1853     | 11    |
| y40 | The Jackknife And The Bootstrap For General Stationary Observations           | 520      | 12    |

#### E.5 Z hubs as rank varies

Table 20: Z (outgoing citation) factor hubs - k = 5,  $\ell_z$  = 1e+05,  $\ell_y$  = 50000

| ID | Title                                                                                                                                       | Cited by | Cites |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| z1 | A Survey Of $L_1$ Regression                                                                                                                | 10       | 63    |
| z1 | A Selective Overview Of Variable Selection In High Dimensional Feature Space                                                                | 293      | 68    |
| z1 | A Majorization-Minimization Approach To Variable Selection Using Spike And Slab Priors                                                      | 8        | 36    |
| z2 | Asymmetric Clusters And Outliers: Mixtures Of Multivariate Contaminated<br>Shifted Asymmetric Laplace Distributions                         | 11       | 66    |
| z2 | Robust Model-Based Clustering Via Mixtures Of Skew- $T$ Distributions With Missing Information                                              | 7        | 43    |
| z2 | Flexible Mixture Modeling Via The Multivariate T Distribution With The<br>Box-Cox Transformation: An Alternative To The Skew-T Distribution | 24       | 36    |
| z3 | Biometrika Highlights From Volume 28 Onwards                                                                                                | 2        | 603   |
| z3 | An Overview Of Semiparametric Models In Survival Analysis                                                                                   | 5        | 77    |
| z3 | Maximum Likelihood Estimation In Semiparametric Regression Models With Censored Data                                                        | 204      | 53    |
| z4 | A Review Of Modern Multiple Hypothesis Testing, With Particular Attention To<br>The False Discovery Proportion                              | 40       | 70    |
| z4 | Multiple Hypothesis Testing In Genomics                                                                                                     | 21       | 65    |
| z4 | Power-Enhanced Multiple Decision Functions Controlling Family-Wise Error And False Discovery Rates                                          | 20       | 37    |
| z5 | Some Issues In Nonparametric Bayesian Modelling Using Species Sampling Models                                                               | 23       | 57    |
| z5 | Inference For Mixtures Of Finite Polya Tree Models                                                                                          | 84       | 45    |
| z5 | Mixture Models With A Prior On The Number Of Components                                                                                     | 70       | 67    |

# Table 21: Z (outgoing citation) factor hubs - k = 10, $\ell_z$ = 1e+05, $\ell_y$ = 50000

| ID  | Title                                                                                  | Cited by | Cites |
|-----|----------------------------------------------------------------------------------------|----------|-------|
| z01 | A Survey Of $L_1$ Regression                                                           | 10       | 63    |
| z01 | A Selective Overview Of Variable Selection In High Dimensional Feature Space           | 293      | 68    |
| z01 | A Majorization-Minimization Approach To Variable Selection Using Spike And Slab Priors | 8        | 36    |

| Tabl | e 21: | Z (outgoing citation) factor hubs - k = 10, $\ell_{\rm z}$ = 1e- | $+05, \ell_{y} =$ | 50000 (  | (continu | ued) |
|------|-------|------------------------------------------------------------------|-------------------|----------|----------|------|
|      | ID    | Title                                                            |                   | Cited by | Cites    |      |

| ID  | Title                                                                                                                                       | Cited by | Cites |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| z02 | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                              | 812      | 109   |
| z02 | Bayesian Statistics In Medicine: A 25 Year Review                                                                                           | 23       | 511   |
| z02 | Bayesian Disease Mapping: Past, Present, And Future                                                                                         | 5        | 98    |
| z03 | Estimating Structured High-Dimensional Covariance And Precision Matrices:<br>Optimal Rates And Adaptive Estimation                          | 63       | 96    |
| z03 | Random Matrix Theory In Statistics: A Review                                                                                                | 53       | 148   |
| z03 | Recent Developments In High Dimensional Covariance Estimation And Its Related Issues, A Review                                              | 2        | 54    |
| z04 | An Overview Of Semiparametric Models In Survival Analysis                                                                                   | 5        | 77    |
| z04 | Biometrika Highlights From Volume 28 Onwards                                                                                                | 2        | 603   |
| z04 | Maximum Likelihood Estimation In Semiparametric Regression Models With Censored Data                                                        | 204      | 53    |
| z05 | Asymmetric Clusters And Outliers: Mixtures Of Multivariate Contaminated<br>Shifted Asymmetric Laplace Distributions                         | 11       | 66    |
| z05 | Robust Model-Based Clustering Via Mixtures Of Skew- $T$ Distributions With Missing Information                                              | 7        | 43    |
| z05 | Flexible Mixture Modeling Via The Multivariate T Distribution With The<br>Box-Cox Transformation: An Alternative To The Skew-T Distribution | 24       | 36    |
| z06 | A Review Of Modern Multiple Hypothesis Testing, With Particular Attention To<br>The False Discovery Proportion                              | 40       | 70    |
| z06 | Multiple Hypothesis Testing In Genomics                                                                                                     | 21       | 65    |
| z06 | Power-Enhanced Multiple Decision Functions Controlling Family-Wise Error And False Discovery Rates                                          | 20       | 37    |
| z07 | Causal Inference: A Missing Data Perspective                                                                                                | 21       | 104   |
| z07 | Matching Methods For Causal Inference: A Review And A Look Forward                                                                          | 272      | 66    |
| z07 | Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data             | 416      | 28    |
| z08 | A Review On Dimension Reduction                                                                                                             | 59       | 74    |
| z08 | Sufficient Dimension Reduction Via Inverse Regression: A Minimum Discrepancy Approach                                                       | 179      | 35    |
| z08 | Feature Filter For Estimating Central Mean Subspace And Its Sparse Solution                                                                 | 1        | 53    |
| z09 | Mixture Models With A Prior On The Number Of Components                                                                                     | 70       | 67    |
| z09 | The Nested Dirichlet Process                                                                                                                | 69       | 36    |
| z09 | A Comparative Review Of Variable Selection Techniques For Covariate<br>Dependent Dirichlet Process Mixture Models                           | 9        | 43    |
| z10 | A Review On Empirical Likelihood Methods For Regression                                                                                     | 81       | 63    |
| z10 | Smoothed Empirical Likelihood Methods For Quantile Regression Models                                                                        | 47       | 30    |
| z10 | Empirical Likelihood For A Varying Coefficient Model With Longitudinal Data                                                                 | 133      | 34    |

# Table 22: Z (outgoing citation) factor hubs - k = 20, $\ell_z$ = 1e+05, $\ell_y$ = 50000

\_

| ID  | Title                                                                        | Cited by | Cites |
|-----|------------------------------------------------------------------------------|----------|-------|
| z01 | Sparsistent And Constansistent Estimation Of The Varying-Coefficient Model   | 3        | 42    |
|     | With A Diverging Number Of Predictors                                        |          |       |
| z01 | Scad-Penalized Regression In Additive Partially Linear Proportional Hazards  | 3        | 37    |
|     | Models With An Ultra-High-Dimensional Linear Part                            |          |       |
| z01 | Partially Linear Structure Selection In Cox Models With Varying Coefficients | 11       | 43    |
| z02 | Adaptive Seamless Designs: Selection And Prospective Testing Of Hypotheses   | 31       | 61    |
| z02 | Group Sequential And Adaptive Designs - A Review Of Basic Concepts And       | 12       | 76    |
|     | Points Of Discussion                                                         |          |       |
| z02 | Methodological Issues With Adaptation Of Clinical Trial Design               | 12       | 41    |

Table 22: Z (outgoing citation) factor hubs - k = 20,  $\ell_z$  = 1e+05,  $\ell_y$  = 50000 (continued)

| ID             | Title                                                                                                               | Cited by | Cites |
|----------------|---------------------------------------------------------------------------------------------------------------------|----------|-------|
| z03            | Bayesian Statistics In Medicine: A 25 Year Review                                                                   | 23       | 511   |
| z03            | Bayesian Disease Mapping: Past, Present, And Future                                                                 | 5        | 98    |
| 203            | Space-Time Interactions In Bayesian Disease Mapping With Recent Tools:<br>Making Things Easier For Practitioners    | 0        | 25    |
| z04            | On Asymptotically Optimal Confidence Regions And Tests For<br>High-Dimensional Models                               | 360      | 36    |
| 204            | Statistical Significance In High-Dimensional Linear Models                                                          | 88       | 33    |
| :04            | Estimation For High-Dimensional Linear Mixed-Effects Models Using $L_1$ -Penalization                               | 47       | 24    |
| 205            | An Overview Of Semiparametric Models In Survival Analysis                                                           | 5        | 77    |
| 205            | Biometrika Highlights From Volume 28 Onwards                                                                        | 2        | 603   |
| 205            | Maximum Likelihood Estimation In Semiparametric Regression Models With Censored Data                                | 204      | 53    |
| 206            | Asymmetric Clusters And Outliers: Mixtures Of Multivariate Contaminated<br>Shifted Asymmetric Laplace Distributions | 11       | 66    |
| :06            | The Multivariate Leptokurtic-Normal Distribution And Its Application In<br>Model-Based Clustering                   | 25       | 56    |
| 206            | A Mixture Of Generalized Hyperbolic Distributions                                                                   | 60       | 39    |
| z07            | A Review Of Modern Multiple Hypothesis Testing, With Particular Attention To The False Discovery Proportion         | 40       | 70    |
| z07            | Multiple Hypothesis Testing In Genomics                                                                             | 21       | 65    |
| :07            | Power-Enhanced Multiple Decision Functions Controlling Family-Wise Error And<br>False Discovery Rates               | 20       | 37    |
| 208            | Matching Methods For Causal Inference: A Review And A Look Forward                                                  | 272      | 66    |
| :08            | Causal Inference: A Missing Data Perspective                                                                        | 21       | 104   |
| 208            | Covariate Balancing Propensity Score                                                                                | 148      | 34    |
| :09            | Mixture Models With A Prior On The Number Of Components                                                             | 70       | 67    |
| :09            | The Nested Dirichlet Process                                                                                        | 69       | 36    |
| :09            | A Comparative Review Of Variable Selection Techniques For Covariate<br>Dependent Dirichlet Process Mixture Models   | 9        | 43    |
| 210            | Estimating Structured High-Dimensional Covariance And Precision Matrices:<br>Optimal Rates And Adaptive Estimation  | 63       | 96    |
| z10            | Random Matrix Theory In Statistics: A Review                                                                        | 53       | 148   |
| 10             | Covariance Estimation: The Glm And Regularization Perspectives                                                      | 57       | 89    |
| :11            | A Review On Dimension Reduction                                                                                     | 59       | 74    |
| 211            | Sufficient Dimension Reduction Via Inverse Regression: A Minimum Discrepancy<br>Approach                            | 179      | 35    |
| 211            | Feature Filter For Estimating Central Mean Subspace And Its Sparse Solution                                         | 1        | 53    |
| 12             | Biometrika Highlights From Volume 28 Onwards                                                                        | 2        | 603   |
| 212            | Modelling Strategies For Repeated Multiple Response Data                                                            | 1        | 41    |
| :12            | Finite Sample Adjustments In Estimating Equations And Covariance Estimators<br>For Intracluster Correlations        | 21       | 32    |
| 213            | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations      | 812      | 109   |
| z13            | General Design Bayesian Generalized Linear Mixed Models                                                             | 61       | 33    |
| z13            | High-Dimensional Bayesian Geostatistics                                                                             | 23       | 51    |
| $\mathbf{z}14$ | A Review On Empirical Likelihood Methods For Regression                                                             | 81       | 63    |
| z14            | A Review Of Empirical Likelihood Methods For Time Series                                                            | 18       | 76    |
| 214            | Empirical Likelihood For A Varying Coefficient Model With Longitudinal Data                                         | 133      | 34    |
| z15            | Boosting Ridge Regression                                                                                           | 23       | 11    |
| 215            | Regularization Approaches In Clinical Biostatistics: A Review Of Methods And<br>Their Applications                  | 0        | 46    |
| z15            | Usage Of The Go Estimator In High Dimensional Linear Models                                                         | 4        | 11    |

| ID  | Title                                                                                           | Cited by | Cites |
|-----|-------------------------------------------------------------------------------------------------|----------|-------|
| z16 | Methods For Scalar-On-Function Regression                                                       | 58       | 124   |
| z16 | A Survey Of Functional Principal Component Analysis                                             | 24       | 88    |
| z16 | Dynamic Relations For Sparsely Sampled Gaussian Processes                                       | 4        | 59    |
| z17 | An Overview On The Progeny Of The Skew-Normal Family-A Personal<br>Perspective                  | 4        | 104   |
| z17 | A Unified View On Skewed Distributions Arising From Selections                                  | 106      | 37    |
| z17 | The Skew-Normal Distribution And Related Multivariate Families                                  | 255      | 36    |
| z18 | Posterior Inference In Bayesian Quantile Regression With Asymmetric Laplace<br>Likelihood       | 33       | 49    |
| z18 | Adaptive Varying-Coefficient Linear Quantile Model: A Profiled Estimating<br>Equations Approach | 1        | 43    |
| z18 | Quantile Regression Methods With Varying-Coefficient Models For Censored Data                   | 9        | 39    |
| z19 | Missing Data Methods In Longitudinal Studies: A Review                                          | 76       | 79    |
| z19 | Analysis Of Longitudinal Data With Drop-Out: Objectives, Assumptions And A<br>Proposal          | 40       | 53    |
| z19 | Missing-Data Methods For Generalized Linear Models: A Comparative Review                        | 148      | 64    |
| z20 | Bayesian Approaches To Variable Selection: A Comparative Study From<br>Practical Perspectives   | 4        | 78    |
| z20 | Prior Distributions For Objective Bayesian Analysis                                             | 27       | 141   |
| z20 | Transdimensional Markov Chains: A Decade Of Progress And Future Perspectives                    | 30       | 57    |

Table 22: Z (outgoing citation) factor hubs - k = 20,  $\ell_z = 1e+05$ ,  $\ell_y = 50000$  (continued)

# Table 23: Z (outgoing citation) factor hubs - k = 40, $\ell_{\rm z}$ = 1e+05, $\ell_{\rm y}$ = 50000

| ID  | Title                                                                                                                       | Cited by | Cites |
|-----|-----------------------------------------------------------------------------------------------------------------------------|----------|-------|
| z01 | A Survey Of $L_1$ Regression                                                                                                | 10       | 63    |
| z01 | A Selective Overview Of Variable Selection In High Dimensional Feature Space                                                | 293      | 68    |
| z01 | Sparse Regression With Exact Clustering                                                                                     | 36       | 18    |
| z02 | Bayesian Statistics In Medicine: A 25 Year Review                                                                           | 23       | 511   |
| z02 | $E(\chi^2)$ -Optimal Mixed-Level Supersaturated Designs                                                                     | 18       | 32    |
| z02 | Optimal Mixed-Level Supersaturated Designs And A New Class Of<br>Combinatorial Designs                                      | 11       | 27    |
| z03 | Group Sequential And Adaptive Designs - A Review Of Basic Concepts And Points Of Discussion                                 | 12       | 76    |
| z03 | Methodological Issues With Adaptation Of Clinical Trial Design                                                              | 12       | 41    |
| z03 | A 25-Year Review Of Sequential Methodology In Clinical Studies                                                              | 11       | 85    |
| z04 | Are Nonprofit Antipoverty Organizations Located Where They Are Needed? A<br>Spatial Analysis Of The Greater Hartford Region | 1        | 21    |
| z04 | Some Recent Work On Multivariate Gaussian Markov Random Fields                                                              | 19       | 63    |
| z04 | Bayesian Shared Spatial-Component Models To Combine And Borrow Strength Across Sparse Disease Surveillance Sources          | 2        | 25    |
| z05 | Construction Of Optimal Multi-Level Supersaturated Designs                                                                  | 47       | 32    |
| z05 | Optimal Multi-Level Supersaturated Designs Constructed From Linear And<br>Quadratic Functions                               | 7        | 23    |
| z05 | Construction Of Some $E \ (\ F \ _{Nod})$ Optimal Mixed-Level Supersaturated Designs                                        | 15       | 22    |
| z06 | Biometrika Highlights From Volume 28 Onwards                                                                                | 2        | 603   |
| z06 | Marginal Screening For High-Dimensional Predictors Of Survival Outcomes                                                     | 2        | 56    |
| z06 | Nonparametric Inference For Right-Censored Data Using Smoothing Splines                                                     | 0        | 37    |
| z07 | Asymmetric Clusters And Outliers: Mixtures Of Multivariate Contaminated<br>Shifted Asymmetric Laplace Distributions         | 11       | 66    |

Table 23: Z (outgoing citation) factor hubs - k = 40,  $\ell_z = 1e+05$ ,  $\ell_y = 50000$  (continued)

| ID         | Title                                                                                                                                                                                                                             | Cited by                                 | Cites  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------|
| z07        | The Multivariate Leptokurtic-Normal Distribution And Its Application In<br>Model-Based Clustering                                                                                                                                 | 25                                       | 56     |
| z07        | Mixtures Of Multivariate Contaminated Normal Regression Models                                                                                                                                                                    | 18                                       | 63     |
| z08        | A Review Of Modern Multiple Hypothesis Testing, With Particular Attention To<br>The False Discovery Proportion                                                                                                                    | 40                                       | 70     |
| z08        | Adaptive False Discovery Rate Control For Heterogeneous Data                                                                                                                                                                      | 7                                        | 37     |
| z08        | Power-Enhanced Multiple Decision Functions Controlling Family-Wise Error And False Discovery Rates                                                                                                                                | 20                                       | 37     |
| z09        | Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis<br>And Causal Inference                                                                                                                                | 0                                        | 74     |
| z09        | Multiply Robust Estimation In Regression Analysis With Missing Data                                                                                                                                                               | 75                                       | 4      |
| z09        | A General Framework For Quantile Estimation With Incomplete Data                                                                                                                                                                  | 18                                       | 4      |
| z10        | Experiments In Stochastic Computation For High-Dimensional Graphical Models                                                                                                                                                       | 95                                       | 1      |
| z10        | Monte Carlo Method For Computing The Marginal Likelihood In<br>Nondecomposable Gaussian Graphical Models                                                                                                                          | 67                                       |        |
| z10        | Covariance Matrix Selection And Estimation Via Penalised Normal Likelihood                                                                                                                                                        | 159                                      | 1      |
| z11        | Mixture Models With A Prior On The Number Of Components                                                                                                                                                                           | 70                                       | 6      |
| z11        | The Nested Dirichlet Process                                                                                                                                                                                                      | 69                                       | 3      |
| z11        | A Comparative Review Of Variable Selection Techniques For Covariate<br>Dependent Dirichlet Process Mixture Models                                                                                                                 | 9                                        | 4      |
| z12        | A Review On Dimension Reduction                                                                                                                                                                                                   | 59                                       | 7      |
| z12        | Sufficient Dimension Reduction Via Inverse Regression: A Minimum Discrepancy<br>Approach                                                                                                                                          | 179                                      | 3      |
| z12        | Feature Filter For Estimating Central Mean Subspace And Its Sparse Solution                                                                                                                                                       | 1                                        | 5      |
| z13        | A Review Of Empirical Likelihood Methods For Time Series                                                                                                                                                                          | 18                                       | 7      |
| z13<br>z13 | A Review On Empirical Likelihood Methods For Regression<br>Empirical Likelihood For A Varying Coefficient Model With Longitudinal Data                                                                                            | 81<br>133                                | 6<br>3 |
| z14<br>z14 | Matching Methods For Causal Inference: A Review And A Look Forward<br>An Introduction To Propensity Score Methods For Reducing The Effects Of<br>Confounding In Observational Studies                                             | 272<br>36                                | 6<br>3 |
| z14        | Causal Inference: A Missing Data Perspective                                                                                                                                                                                      | 21                                       | 10     |
| z15<br>z15 | Space-Time Covariance Functions<br>High-Dimensional Bayesian Geostatistics                                                                                                                                                        | $\begin{array}{c} 164 \\ 23 \end{array}$ | 1      |
| z15<br>z15 | A Case Study Competition Among Methods For Analyzing Large Spatial Data                                                                                                                                                           | 23<br>111                                | 5<br>5 |
| z16        | Improving The Correlation Structure Selection Approach For Generalized                                                                                                                                                            | 19                                       | 2      |
| z16        | Estimating Equations And Balanced Longitudinal Data<br>Criterion For The Simultaneous Selection Of A Working Correlation Structure<br>And Either Generalized Estimating Equations Or The Quadratic Inference<br>Function Approach | 10                                       | 3      |
| z16        | Finite Sample Adjustments In Estimating Equations And Covariance Estimators<br>For Intracluster Correlations                                                                                                                      | 21                                       | 3      |
| z17        | Methods For Scalar-On-Function Regression                                                                                                                                                                                         | 58                                       | 12     |
| z17        | Functional Response Models                                                                                                                                                                                                        | 70                                       | 2      |
| z17        | A Survey Of Functional Principal Component Analysis                                                                                                                                                                               | 24                                       | 8      |
| z18        | Practical Comparison Of Sparse Methods For Classification Of Arabica And<br>Robusta Coffee Species Using Near Infrared Hyperspectral Imaging                                                                                      | 8                                        | 2      |
| z18        | [Hdda] Sparse Subspace Constrained Partial Least Squares                                                                                                                                                                          | 0                                        | 1      |
| z18        | Regularized Partial Least Squares With An Application To Nmr Spectroscopy                                                                                                                                                         | 6                                        | 2      |
| z19        | An Overview On The Progeny Of The Skew-Normal Family-A Personal<br>Perspective                                                                                                                                                    | 4                                        | 10     |
| z19        | A Unified View On Skewed Distributions Arising From Selections                                                                                                                                                                    | 106                                      | 3      |
| z19        | The Skew-Normal Distribution And Related Multivariate Families                                                                                                                                                                    | 255                                      | 3      |

Table 23: Z (outgoing citation) factor hubs - k = 40,  $\ell_z = 1e+05$ ,  $\ell_y = 50000$  (continued)

| ID         | Title                                                                                                                                       | Cited by                             | Cites     |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|
| z20        | Posterior Inference In Bayesian Quantile Regression With Asymmetric Laplace<br>Likelihood                                                   | 33                                   | 49        |
| z20        | Multiple Quantile Modeling Via Reduced-Rank Regression                                                                                      | 1                                    | 37        |
| z20        | Bayesian Model Selection In Ordinal Quantile Regression                                                                                     | 6                                    | 49        |
| z21        | A Brief Review Of Approaches To Non-Ignorable Non-Response                                                                                  | 4                                    | 68        |
| z21        | Bayesian Approaches For Missing Not At Random Outcome Data: The Role Of<br>Identifying Restrictions                                         | 17                                   | 51        |
| z21        | Formal And Informal Model Selection With Incomplete Data                                                                                    | 5                                    | 55        |
| z22        | Bayesian Approaches To Variable Selection: A Comparative Study From<br>Practical Perspectives                                               | 4                                    | 78        |
| z22<br>z22 | Hierarchical Bayesian Formulations For Selecting Variables In Regression Models<br>Prior Distributions For Objective Bayesian Analysis      | $9\\27$                              | 49<br>141 |
| z23        | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nexted Laplace Approximations                              | 812                                  | 109       |
| z23        | Integrated Nested Laplace Approximations<br>Mixed Model Prediction And Small Area Estimation                                                | 127                                  | 88        |
| z23        | General Design Bayesian Generalized Linear Mixed Models                                                                                     | 61                                   | 33        |
| z24        | Statistics Of Extremes For Iid Data And Breakthroughs In The Estimation Of                                                                  | 16                                   | 48        |
| z24        | The Extreme Value Index: Laurens De Haan Leading Contributions<br>An Overview And Open Research Topics In Statistics Of Univariate Extremes | 34                                   | 10        |
| z24<br>z24 | A Modeler's Guide To Extreme Value Software                                                                                                 | 0                                    | 10        |
| z25        | Inference For Single And Multiple Change-Points In Time Series                                                                              | 47                                   | 10        |
| z25        | Multiscale Change Point Inference                                                                                                           | 118                                  | 9         |
| z25        | Structural Breaks In Time Series                                                                                                            | 137                                  | 7         |
| z26        | An Adaptive Confirmatory Trial With Interim Treatment Selection: Practical<br>Experiences And Unbalanced Randomization                      | 6                                    | 4         |
| z26        | Twenty-Five Years Of Confirmatory Adaptive Designs: Opportunities And Pitfalls                                                              | 53                                   | 113       |
| z26        | The Fallback Procedure For Evaluating A Single Family Of Hypotheses                                                                         | 64                                   | 10        |
| z27        | Nonparametric Inference With Generalized Likelihood Ratio Tests                                                                             | 46                                   | 6         |
| z27        | Statistical Inference In Partially-Varying-Coefficient Single-Index Model                                                                   | 26                                   | 2         |
| z27        | Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially<br>Linear Models                                              | 360                                  | $2^{4}$   |
| z28        | Random Matrix Theory In Statistics: A Review                                                                                                | 53                                   | 143       |
| z28        | Estimating Structured High-Dimensional Covariance And Precision Matrices:<br>Optimal Rates And Adaptive Estimation                          | 63                                   | 9         |
| z28        | Large Covariance Estimation By Thresholding Principal Orthogonal<br>Complements                                                             | 214                                  | 6         |
| z29        | Bayesian Computation: A Summary Of The Current State, And Samples<br>Backwards And Forwards                                                 | 20                                   | 10        |
| z29        | The Hastings Algorithm At Fifty                                                                                                             | 7                                    | 7         |
| z29        | A Short History Of Markov Chain Monte Carlo: Subjective Recollections From<br>Incomplete Data                                               | 17                                   | 6         |
| z30        | Joint Modeling Of Longitudinal And Time-To-Event Data: An Overview                                                                          | 341                                  | 3         |
| z30        | An Approach To Joint Analysis Of Longitudinal Measurements And Competing                                                                    | 51                                   | 3         |
| z30        | Risks Failure Time Data<br>Missing Data Methods In Longitudinal Studies: A Review                                                           | 76                                   | 79        |
|            | · ·                                                                                                                                         |                                      |           |
| z31<br>z31 | Modified Liu-Type Estimator Based On (Rk) Class Estimator<br>A Simulation Study On Some Restricted Ridge Regression Estimators              | $\begin{array}{c} 17\\12\end{array}$ | 18<br>1'  |
| z31<br>z31 | Performance Of Kibria's Method For The Heteroscedastic Ridge Regression                                                                     | 12<br>20                             | 1         |
| -01        | Model: Some Monte Carlo Evidence                                                                                                            | 20                                   | 2         |
| z32        | Automated Inference And Learning In Modeling Financial Volatility                                                                           | 34                                   | 2         |
| z32        | Modeling Multiple Regimes In Financial Volatility With A Flexible Coefficient                                                               | 9                                    | 3         |
|            | Garch(1,1) Model                                                                                                                            |                                      |           |

| ID  | Title                                                                                                                            | Cited by | Cites |
|-----|----------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| z32 | Pseudo-Maximum Likelihood Estimation Of $\operatorname{Arch}(\infty)$ Models                                                     | 27       | 22    |
| z33 | Piecewise Linear Approximations For Cure Rate Models And Associated<br>Inferential Issues                                        | 20       | 44    |
| z33 | Proportional Hazards Under Conway-Maxwell-Poisson Cure Rate Model And<br>Associated Inference                                    | 8        | 31    |
| z33 | A Support Vector Machine-Based Cure Rate Model For Interval Censored Data                                                        | 0        | 50    |
| z34 | Defining And Estimating Intervention Effects For Groups That Will Develop An<br>Auxiliary Outcome                                | 39       | 29    |
| z34 | A Refreshing Account Of Principal Stratification                                                                                 | 18       | 34    |
| z34 | Instrumental Variables: An Econometrician's Perspective                                                                          | 25       | 8     |
| z35 | Semiparametric Regression During 2003-2007                                                                                       | 58       | 219   |
| z35 | Twenty Years Of P-Splines                                                                                                        | 42       | 10    |
| z35 | A General Framework For Functional Regression Modelling                                                                          | 42       | 7     |
| z36 | Prior Distributions For Objective Bayesian Analysis                                                                              | 27       | 14    |
| z36 | Transdimensional Markov Chains: A Decade Of Progress And Future<br>Perspectives                                                  | 30       | 5     |
| z36 | Marginal Likelihood Estimation Via Power Posteriors                                                                              | 88       | 2     |
| z37 | High-Breakdown Robust Multivariate Methods                                                                                       | 85       | 11    |
| z37 | On General Notions Of Depth For Regression                                                                                       | 5        | 6     |
| z37 | A Decomposition Of Total Variation Depth For Understanding Functional<br>Outliers                                                | 5        | 3     |
| z38 | An Overview Of Semiparametric Models In Survival Analysis                                                                        | 5        | 7     |
| z38 | Semiparametric Transformation Models With Time-Varying Coefficients For<br>Recurrent And Terminal Events                         | 21       | 2     |
| z38 | Additive-Multiplicative Rates Model For Recurrent Events                                                                         | 22       | 3     |
| z39 | Scad-Penalized Regression In Additive Partially Linear Proportional Hazards<br>Models With An Ultra-High-Dimensional Linear Part | 3        | 3     |
| z39 | Partially Linear Structure Selection In Cox Models With Varying Coefficients                                                     | 11       | 4     |
| z39 | Variable Selection In A Partially Linear Proportional Hazards Model With A Diverging Dimensionality                              | 10       | 3     |
| z40 | Bootstrap Methods For Dependent Data: A Review                                                                                   | 32       | 7     |
| z40 | Stability                                                                                                                        | 26       | 3     |
| z40 | Peter Hall's Contributions To The Bootstrap                                                                                      | 6        | 4     |

Table 23: Z (outgoing citation) factor hubs - k = 40,  $\ell_z = 1e+05$ ,  $\ell_y = 50000$  (continued)

# **F** Sensitivity to clipping parameters

This section contains supplementary results for estimates using varying clipping factors  $\ell_z$  and  $\ell_y$ , while holding k = 30 constant.

# F.1 Y keywords as clipping parameters vary

Table 24: Keywords for Y (incoming citation) factors - k = 30,  $\ell_z$  = 1,  $\ell_y$  = 1

| Factor Name | Top words                                                           | ID  |
|-------------|---------------------------------------------------------------------|-----|
| y01         | series, garch, autoregressive, time, change, extreme                | y01 |
| y02         | lasso, regularization, coordinate, longitudinal, descent, selection | y02 |
| y03         | lasso, selection, regression, shrinkage, via, variable              | y03 |
| y04         | selection, variable, penalized, oracle, nonconcave, lasso           | y04 |
| y05         | graphical, covariance, estimation, sparse, lasso, high              | y05 |

| y06 | functional, regression, data, principal, linear, longitudinal       | y06 |
|-----|---------------------------------------------------------------------|-----|
| y07 | recurrent, event, events, longitudinal, semiparametric, joint       | y07 |
| y08 | screening, dimensional, ultrahigh, feature, high, independence      | y08 |
| y09 | bayesian, bayes, selection, cure, priors, variable                  | y09 |
| y10 | false, discovery, multiple, testing, rate, controlling              | y10 |
| y11 | regression, coefficient, models, varying, estimation, nonparametric | y11 |
| y12 | spatial, gaussian, large, datasets, covariance, spatio              | y12 |
| y13 | missing, imputation, data, nonignorable, longitudinal, nonresponse  | y13 |
| y14 | quantile, regression, quantiles, censored, estimation, expectile    | y14 |
| y15 | covariance, matrices, high, dimensional, matrix, large              | y15 |
| y16 | monte, carlo, bayesian, markov, chain, metropolis                   | y16 |
| y17 | skew, normal, distributions, distribution, multivariate, t          | y17 |
| y18 | longitudinal, data, generalized, cluster, binary, estimating        | y18 |
| y19 | dimension, reduction, sliced, regression, inverse, sufficient       | y19 |
| y20 | longitudinal, depth, joint, data, models, mixed                     | y20 |
| y21 | bayesian, models, disease, complexity, longitudinal, spatial        | y21 |
| y22 | high, dimensional, regression, lasso, depth, dantzig                | y22 |
| y23 | empirical, likelihood, confidence, ratio, intervals, jackknife      | y23 |
| y24 | models, mixed, generalized, splines, linear, smoothing              | y24 |
| y25 | propensity, causal, score, treatment, observational, effects        | y25 |
| y26 | model, clustering, selection, mixture, mixtures, dimension          | y26 |
| y27 | bayesian, dirichlet, nonparametric, mixture, mixtures, priors       | y27 |
| y28 | treatment, regimes, individualized, learning, rules, dynamic        | y28 |
| y29 | survival, censored, hazards, proportional, cox, data                | y29 |
| y30 | ridge, regression, liu, estimator, biased, nonorthogonal            | y30 |

# Table 25: Keywords for Y (incoming citation) factors - k = 30, $\ell_z$ = 25000, $\ell_y$ = 25000

| Factor Name | Top words                                                           | ID  |
|-------------|---------------------------------------------------------------------|-----|
| y01         | selection, variable, penalized, oracle, nonconcave, lasso           | y01 |
| y02         | screening, dimensional, ultrahigh, feature, independence, high      | y02 |
| y03         | graphical, covariance, lasso, sparse, estimation, selection         | y03 |
| y04         | high, dimensional, lasso, regression, density, dantzig              | y04 |
| y05         | treatment, regimes, learning, individualized, optimal, dynamic      | y05 |
| y06         | functional, longitudinal, data, regression, linear, principal       | y06 |
| y07         | lasso, selection, regression, shrinkage, via, variable              | y07 |
| y08         | bayesian, models, longitudinal, disease, complexity, mapping        | y08 |
| y09         | covariance, matrices, high, dimensional, matrix, large              | y09 |
| y10         | bayesian, selection, bayes, variable, priors, posterior             | y10 |
| y11         | lasso, regularization, censored, coordinate, descent, selection     | y11 |
| y12         | models, splines, smoothing, regression, mixed, cure                 | y12 |
| y13         | models, coefficient, regression, varying, partially, semiparametric | y13 |
| y14         | false, discovery, multiple, testing, rate, controlling              | y14 |
| y15         | dimension, reduction, regression, sliced, inverse, sufficient       | y15 |
| y16         | survival, censored, hazards, proportional, data, cox                | y16 |
| y17         | longitudinal, data, generalized, models, binary, estimating         | y17 |
| y18         | bootstrap, cure, nonparametric, censored, jackknife, extreme        | y18 |
| y19         | model, clustering, mixture, selection, dimension, mixtures          | y19 |
| y20         | trials, clinical, sequential, adaptive, group, designs              | y20 |
| y21         | empirical, likelihood, confidence, ratio, missing, intervals        | y21 |
| y22         | bayesian, dirichlet, nonparametric, mixture, mixtures, priors       | y22 |
| y23         | propensity, causal, score, treatment, observational, effects        | y23 |
| y24         | monte, carlo, bayesian, markov, chain, metropolis                   | y24 |
| y25         | series, change, garch, autoregressive, time, point                  | y25 |
| y26         | skew, normal, distributions, multivariate, distribution, t          | y26 |
| y27         | missing, imputation, data, longitudinal, nonignorable, nonresponse  | y27 |

| y28 | quantile, regression, quantiles, censored, estimation, longitudinal | y28 |
|-----|---------------------------------------------------------------------|-----|
| y29 | spatial, gaussian, datasets, large, spatio, temporal                | y29 |
| y30 | ridge, regression, liu, estimator, estimators, biased               | y30 |

Table 26: Keywords for Y (incoming citation) factors - k = 30,  $\ell_z$  = 50000,  $\ell_y$  = 50000

| Factor Name | Top words                                                                                                       | ID  |
|-------------|-----------------------------------------------------------------------------------------------------------------|-----|
| y01         | selection, variable, penalized, oracle, nonconcave, lasso                                                       | y01 |
| y02         | models, spatial, mixed, bayesian, splines, generalized                                                          | y02 |
| y03         | graphical, covariance, sparse, estimation, lasso, high                                                          | y03 |
| y04         | lasso, selection, regression, shrinkage, via, density                                                           | y04 |
| y05         | high, dimensional, lasso, confidence, regression, selection                                                     | y05 |
| y06         | treatment, regimes, learning, individualized, optimal, estimating                                               | y06 |
| y07         | bayesian, complexity, models, disease, mapping, fit                                                             | y07 |
| y08         | regularization, coordinate, descent, lasso, via, paths                                                          | y08 |
| y09         | spatial, large, datasets, gaussian, covariance, bootstrap                                                       | y09 |
| y10         | survival, censored, hazards, proportional, regression, cox                                                      | y10 |
| y11         | functional, regression, linear, principal, data, longitudinal                                                   | y11 |
| y12         | false, discovery, multiple, testing, rate, controlling                                                          | y12 |
| y13         | model, clustering, mixture, selection, dimension, mixtures                                                      | y13 |
| y14         | longitudinal, data, generalized, models, estimating, binary                                                     | y14 |
| y15         | dirichlet, bayesian, nonparametric, mixture, mixtures, priors                                                   | y15 |
| y16         | trials, clinical, sequential, adaptive, group, designs                                                          | y16 |
| y17         | dimension, reduction, regression, sliced, inverse, sufficient                                                   | y17 |
| y18         | screening, dimensional, ultrahigh, feature, independence, high                                                  | y18 |
| y19         | propensity, causal, score, effects, treatment, observational                                                    | y19 |
| y20         | regression, models, coefficient, varying, nonparametric, semiparametric $% \left( {{{\mathbf{x}}_{i}}} \right)$ | y20 |
| y21         | bayesian, selection, bayes, variable, priors, posterior                                                         | y21 |
| y22         | empirical, likelihood, confidence, ratio, intervals, regions                                                    | y22 |
| y23         | monte, carlo, markov, bayesian, chain, metropolis                                                               | y23 |
| y24         | covariance, series, high, matrices, garch, autoregressive                                                       | y24 |
| y25         | missing, imputation, data, longitudinal, nonignorable, nonresponse                                              | y25 |
| y26         | quantile, regression, quantiles, censored, estimation, conditional                                              | y26 |
| y27         | skew, normal, distributions, multivariate, distribution, t                                                      | y27 |
| y28         | longitudinal, joint, models, mixed, effects, data                                                               | y28 |
| y29         | cure, survival, bootstrap, censored, rate, causal                                                               | y29 |
| y30         | ridge, regression, biased, estimators, estimator, nonorthogonal                                                 | y30 |

Table 27: Keywords for Y (incoming citation) factors - k = 30,  $\ell_z$  = 70000,  $\ell_y$  = 70000

| Factor Name | Top words                                                          | ID  |
|-------------|--------------------------------------------------------------------|-----|
| y01         | selection, variable, penalized, oracle, nonconcave, lasso          | y01 |
| y02         | screening, dimensional, feature, independence, ultrahigh, high     | y02 |
| y03         | lasso, high, dimensional, regression, selection, dantzig           | y03 |
| y04         | treatment, regimes, censored, survival, individualized, estimating | y04 |
| y05         | spatial, gaussian, bayesian, covariance, datasets, large           | y05 |
| y06         | bayesian, complexity, models, disease, fit, mapping                | y06 |
| y07         | graphical, covariance, sparse, lasso, estimation, high             | y07 |
| y08         | functional, regression, principal, longitudinal, linear, data      | y08 |
| y09         | survival, hazards, censored, proportional, regression, cox         | y09 |
| y10         | model, dimension, selection, mixture, clustering, estimating       | y10 |
| y11         | longitudinal, data, generalized, models, estimating, binary        | y11 |
| y12         | dirichlet, bayesian, nonparametric, mixtures, mixture, priors      | y12 |
| y13         | covariance, matrices, high, matrix, large, estimation              | y13 |

| Factor Name | Top words                                                               | ID          |
|-------------|-------------------------------------------------------------------------|-------------|
| z01         | skew, density, garch, bibliography, tests, cure                         | z01         |
| z02         | sequential, trials, clinical, group, adaptive, interim                  | z02         |
| z03         | mixed, longitudinal, variance, bayesian, effects, components            | z03         |
| z04         | selection, high, variable, dimensional, lasso, regression               | <b>z</b> 04 |
| z05         | wavelet, graphical, covariance, high, bayes, regression                 | z05         |
| z06         | bootstrap, bootstrapping, confidence, jackknife, functional, resampling | z06         |
| z07         | survival, hazards, censored, proportional, cox, data                    | z07         |
| z08         | censored, survival, data, kaplan, meier, nonparametric                  | z08         |
| z09         | bayesian, transformations, transformation, regression, bayes, box       | z09         |
| z10         | multiple, false, procedures, discovery, testing, sequential             | z10         |
| z11         | density, kernel, estimation, nonparametric, bandwidth, regression       | z11         |
| z12         | bayesian, spatial, models, model, survival, disease                     | z12         |
| z13         | longitudinal, data, missing, covariance, multivariate, growth           | z13         |
| z14         | quantile, bootstrap, garch, regression, bayesian, recurrent             | z14         |
| z15         | robust, regression, quantile, location, depth, estimators               | z15         |
| z16         | bayesian, carlo, monte, sequential, mcmc, quantile                      | z16         |
| z17         | skew, quantile, regression, propensity, bibliography, normal            | z1          |
| z18         | longitudinal, data, causal, contingency, binary, propensity             | z18         |
| z19         | reduction, dimension, regression, sufficient, index, single             | z19         |
| z20         | designs, longitudinal, models, experiments, experimental, propensity    | z20         |
| z21         | unit, root, cointegration, series, autoregressive, roots                | z2          |
| z22         | regression, quantile, longitudinal, data, models, nonparametric         | z22         |
| z23         | empirical, likelihood, tests, regression, nonparametric, rank           | z2          |
| z24         | longitudinal, missing, likelihood, models, data, mixed                  | $z2^{2}$    |
| z25         | missing, causal, propensity, sampling, imputation, score                | z2s         |
| z26         | selection, clustering, model, mixture, skew, regression                 | z20         |
| z27         | bayesian, dirichlet, nonparametric, process, mixture, mixtures          | z2'         |
| z28         | monte, carlo, bayesian, ridge, metropolis, mcmc                         | z28         |
| z29         | survival, data, models, hazards, model, censored                        | z29         |
| z30         | ridge, cure, skew, regression, normal, liu                              | z3(         |
|             |                                                                         |             |
| /14         | false, discovery, multiple, rate, testing, controlling                  | y14         |
| v15         | dimension, reduction, regression, sliced, inverse, sufficient           | y15         |
| /16         | propensity, causal, score, effects, observational, treatment            | y16         |
| /17         | empirical, likelihood, confidence, ratio, intervals, regions            | y17         |
| v18         | lasso, selection, regression, shrinkage, via, variable                  | y18         |
| /19         | coordinate, regularization, descent, lasso, garch, models               | y19         |
| y20         | bayesian, selection, variable, bayes, factors, priors                   | y20         |
| /21         | trials, clinical, sequential, adaptive, group, interim                  | y21         |
| v22         | quantile, regression, quantiles, censored, median, depth                | y22         |
| /23         | missing, data, imputation, longitudinal, nonignorable, drop             | y23         |
| /24         | skew, normal, distributions, multivariate, distribution, t              | y24         |
| v25         | models, smoothing, regression, longitudinal, mixed, linear              | y25         |
| /26         | monte, carlo, markov, chain, metropolis, bayesian                       | y26         |
| y27         | bootstrap, series, jackknife, cure, autoregressive, models              | y27         |
| /28         | models, semiparametric, estimation, coefficient, regression, varying    | y28         |
| /29         | cure, survival, mixture, censored, data, proportional                   | y29         |
| y30         | ridge, regression, biased, estimators, nonorthogonal, estimator         | y3(         |

Table 28: Keywords for Z (outgoing citation) factors - k = 30,  $\ell_z$  = 1,  $\ell_y$  = 1

| Factor Name | Top words                                                              | ID  |
|-------------|------------------------------------------------------------------------|-----|
| z01         | selection, variable, high, dimensional, lasso, regression              | z01 |
| z02         | mixed, models, effects, linear, generalized, data                      | z02 |
| z03         | graphical, covariance, wavelet, high, skew, dimensional                | z03 |
| z04         | density, kernel, bandwidth, estimation, nonparametric, estimators      | z04 |
| z05         | unit, root, cointegration, models, roots, tests                        | z05 |
| z06         | longitudinal, functional, bayesian, data, growth, repeated             | z06 |
| z07         | regression, transformation, skew, transformations, selection, data     | z07 |
| z08         | bayesian, spatial, models, disease, spatio, hierarchical               | z08 |
| z09         | robust, regression, high, breakdown, bayesian, depth                   | z09 |
| z10         | bayesian, selection, bayes, models, priors, variable                   | z10 |
| z11         | censored, survival, data, meier, kaplan, censoring                     | z11 |
| z12         | frailty, bivariate, cure, survival, data, copula                       | z12 |
| z13         | regression, nonparametric, models, varying, coefficient, estimation    | z13 |
| z14         | multiple, false, testing, discovery, procedures, rate                  | z14 |
| z15         | dimension, reduction, sufficient, index, sliced, single                | z15 |
| z16         | survival, hazards, censored, proportional, data, cox                   | z16 |
| z17         | longitudinal, data, binary, models, estimating, clustered              | z17 |
| z18         | bootstrap, bootstrapping, confidence, resampling, intervals, screening | z18 |
| z19         | selection, model, clustering, mixture, models, mixtures                | z19 |
| z20         | trials, clinical, sequential, group, adaptive, designs                 | z20 |
| z21         | empirical, likelihood, inference, semiparametric, models, partially    | z21 |
| z22         | bayesian, dirichlet, nonparametric, mixture, process, clustering       | z22 |
| z23         | causal, propensity, treatment, score, effects, observational           | z23 |
| z24         | bayesian, monte, carlo, markov, chain, gibbs                           | z24 |
| z25         | garch, series, volatility, time, change, arch                          | z25 |
| z26         | skew, normal, distributions, multivariate, t, mixtures                 | z26 |
| z27         | missing, data, longitudinal, imputation, with, incomplete              | z27 |
| z28         | quantile, regression, quantiles, estimation, censored, conditional     | z28 |
| z29         | recurrent, event, survival, hazards, cox, data                         | z29 |
| z30         | ridge, regression, estimator, liu, linear, estimators                  | z30 |

Table 29: Keywords for Z (outgoing citation) factors - k = 30,  $\ell_z$  = 25000,  $\ell_y$  = 25000

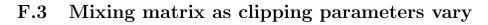

| Factor Name | Top words                                                               | ID  |
|-------------|-------------------------------------------------------------------------|-----|
| z01         | selection, variable, lasso, high, dimensional, sparse                   | z01 |
| z02         | mixed, models, effects, generalized, linear, data                       | z02 |
| z03         | wavelet, graphical, high, covariance, estimation, dimensional           | z03 |
| z04         | density, kernel, bandwidth, regression, nonparametric, estimation       | z04 |
| z05         | bayesian, models, gibbs, high, monte, carlo                             | z05 |
| z06         | unit, root, cointegration, tests, roots, series                         | z06 |
| z07         | bayesian, spatial, models, disease, mapping, hierarchical               | z07 |
| z08         | frailty, survival, recurrent, data, bivariate, copula                   | z08 |
| z09         | bootstrap, bootstrapping, resampling, confidence, intervals, spatial    | z09 |
| z10         | survival, hazards, cox, proportional, data, censored                    | z10 |
| z11         | robust, functional, regression, depth, high, breakdown                  | z11 |
| z12         | false, multiple, discovery, testing, rate, microarray                   | z12 |
| z13         | selection, model, clustering, mixture, models, mixtures                 | z13 |
| z14         | longitudinal, data, binary, estimating, generalized, clustered          | z14 |
| z15         | bayesian, dirichlet, nonparametric, mixture, clustering, semiparametric | z15 |
| z16         | trials, clinical, sequential, group, adaptive, designs                  | z16 |
| z17         | dimension, reduction, sufficient, index, single, sliced                 | z17 |
| z18         | censored, survival, data, screening, right, estimation                  | z18 |
| z19         | causal, propensity, treatment, score, effects, observational            | z19 |
| z20         | regression, varying, models, coefficient, nonparametric, partially      | z20 |
| z21         | bayesian, selection, bayes, priors, variable, model                     | z21 |
| z22         | empirical, likelihood, inference, semiparametric, partially, models     | z22 |
| z23         | bayesian, monte, carlo, chain, markov, mcmc                             | z23 |
| z24         | garch, volatility, series, arch, high, time                             | z24 |
| z25         | missing, data, imputation, longitudinal, with, nonignorable             | z25 |
| z26         | quantile, regression, quantiles, censored, conditional, composite       | z26 |
| z27         | skew, normal, distributions, multivariate, distribution, t              | z27 |
| z28         | longitudinal, mixed, data, effects, models, joint                       | z28 |
| z29         | cure, survival, data, censored, interval, models                        | z29 |
| z30         | regression, ridge, estimator, liu, linear, selection                    | z30 |

Table 30: Keywords for Z (outgoing citation) factors - k = 30,  $\ell_z$  = 50000,  $\ell_y$  = 50000

| Factor Name | Top words                                                            | ID  |
|-------------|----------------------------------------------------------------------|-----|
| z01         | high, wavelet, dimensional, selection, sparse, regression            | z01 |
| z02         | mixed, models, screening, effects, generalized, dimensional          | z02 |
| z03         | graphical, high, bayesian, biometrika, spatial, models               | z03 |
| z04         | survival, frailty, censored, data, treatment, recurrent              | z04 |
| z05         | bayesian, spatial, models, disease, spatio, temporal                 | z05 |
| z06         | functional, bayesian, regression, high, robust, depth                | z06 |
| z07         | longitudinal, mixed, models, data, joint, effects                    | z07 |
| z08         | functional, bayesian, data, covariance, high, models                 | z08 |
| z09         | survival, hazards, cox, proportional, data, censored                 | z09 |
| z10         | selection, model, clustering, mixture, models, mixtures              | z10 |
| z11         | longitudinal, data, binary, estimating, generalized, clustered       | z11 |
| z12         | bayesian, dirichlet, nonparametric, mixture, clustering, process     | z12 |
| z13         | censored, survival, data, estimation, high, covariance               | z13 |
| z14         | false, discovery, multiple, testing, rate, microarray                | z14 |
| z15         | dimension, reduction, sufficient, index, single, sliced              | z15 |
| z16         | propensity, causal, score, treatment, missing, observational         | z16 |
| z17         | empirical, likelihood, inference, partially, missing, semiparametric | z17 |
| z18         | selection, variable, lasso, high, dimensional, sparse                | z18 |
| z19         | garch, volatility, series, unit, time, root                          | z19 |
| z20         | bayesian, selection, variable, priors, model, models                 | z20 |
| z21         | trials, clinical, adaptive, sequential, group, designs               | z21 |
| z22         | quantile, regression, quantiles, censored, composite, expectile      | z22 |
| z23         | missing, data, imputation, longitudinal, nonignorable, with          | z23 |
| z24         | skew, normal, distributions, multivariate, distribution, t           | z24 |
| z25         | models, varying, coefficient, regression, partially, functional      | z25 |
| z26         | bayesian, monte, carlo, mcmc, markov, metropolis                     | z26 |
| z27         | bootstrap, recurrent, bootstrapping, models, varying, resampling     | z27 |
| z28         | causal, treatment, effects, propensity, instrumental, effect         | z28 |
| z29         | cure, survival, data, censored, model, mixture                       | z29 |
| z30         | regression, ridge, estimator, liu, linear, selection                 | z30 |

Table 31: Keywords for Z (outgoing citation) factors - k = 30,  $\ell_z$  = 70000,  $\ell_y$  = 70000

F.2 Z keywords as clipping parameters vary



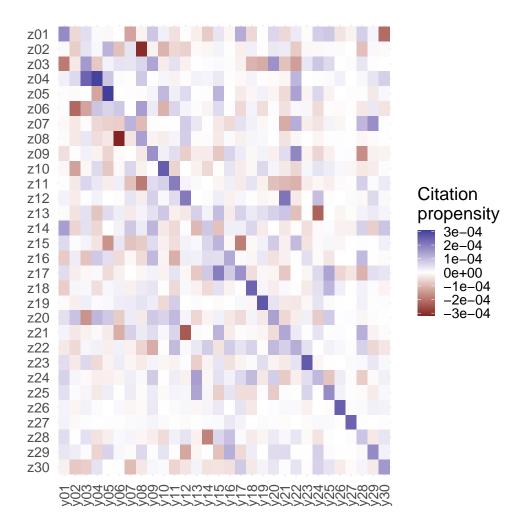



Figure 11:  $\hat{B}$  when  $\ell_z = 1$  and  $\ell_y = 1$ 

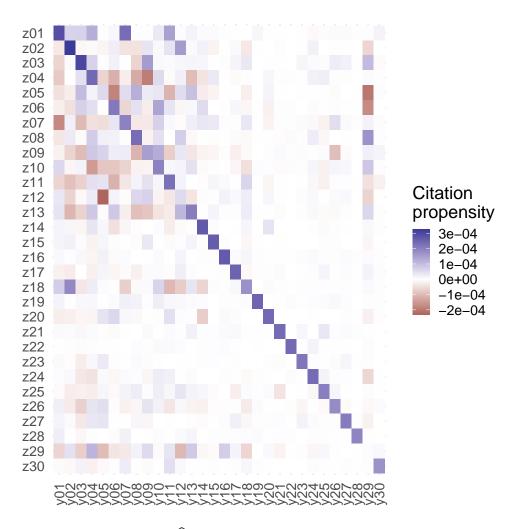



Figure 12:  $\widehat{B}$  when  $\ell_{\rm z}=25,000$  and  $\ell_{\rm y}=25,000$ 

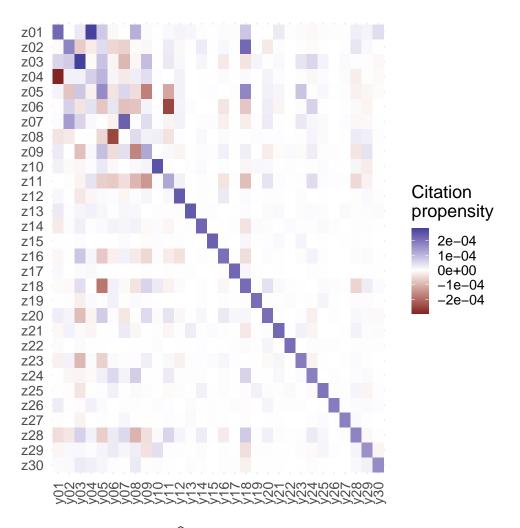



Figure 13:  $\widehat{B}$  when  $\ell_{\rm z}=50,000$  and  $\ell_{\rm y}=50,000$ 

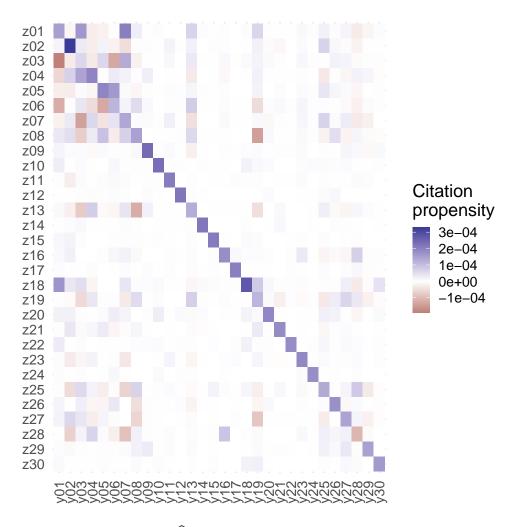



Figure 14:  $\widehat{B}$  when  $\ell_{\rm z}=70,000$  and  $\ell_{\rm y}=70,000$ 

#### F.4 Y hubs as clipping parameters vary

Table 32: Y (incoming citation) factor hubs - k = 30,  $\ell_z = 1, \, \ell_y = 1$ 

| ID  | Title                                                                                                             | Cited by | Cites |
|-----|-------------------------------------------------------------------------------------------------------------------|----------|-------|
| y01 | Variable Selection Via Nonconcave Penalized Likelihood And Its Oracle<br>Properties                               | 2804     | 14    |
| y01 | The Adaptive Lasso And Its Oracle Properties                                                                      | 2052     | 14    |
| y01 | Nearly Unbiased Variable Selection Under Minimax Concave Penalty                                                  | 987      | 36    |
| y02 | Sure Independence Screening For Ultrahigh Dimensional Feature Space                                               | 905      | 33    |
| y02 | Feature Screening Via Distance Correlation Learning                                                               | 327      | 22    |
| y02 | Sure Independence Screening In Generalized Linear Models With Np-Dimensionality                                   | 305      | 24    |
| y03 | Bayesian Measures Of Model Complexity And Fit                                                                     | 2107     | 38    |
| y03 | Prior Distributions For Variance Parameters In Hierarchical Models(Comment<br>On An Article By Browne And Draper) | 906      | 28    |
| y03 | Bayesian Image-Restoration, With 2 Applications In Spatial Statistics                                             | 797      | 3     |
| y04 | On Asymptotically Optimal Confidence Regions And Tests For<br>High-Dimensional Models                             | 360      | 36    |

| ID  | Title                                                                                                                                | Cited by | Cites |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| y04 | Confidence Intervals For Low Dimensional Parameters In High Dimensional Linear Models                                                | 350      | 33    |
| y04 | Simultaneous Analysis Of Lasso And Dantzig Selector                                                                                  | 617      | 16    |
| y05 | Regression Models And Life-Tables                                                                                                    | 4087     | 21    |
| y05 | Cox Regression-Model For Counting-Processes - A Large Sample Study                                                                   | 1218     | 13    |
| y05 | Nonparametric-Estimation From Incomplete Observations                                                                                | 1853     | 11    |
| y06 | Estimating Dimension Of A Model                                                                                                      | 3727     | 3     |
| y06 | Model-Based Clustering, Discriminant Analysis, And Density Estimation                                                                | 594      | 43    |
| y06 | Some Comments On Cp                                                                                                                  | 770      | 18    |
| y07 | The Central Role Of The Propensity Score In Observational Studies For Causal Effects                                                 | 1497     | 11    |
| y07 | Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study              | 334      | 8     |
| y07 | Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data      | 416      | 28    |
| y08 | Controlling The False Discovery Rate - A Practical And Powerful Approach To Multiple Testing                                         | 2025     | 9     |
| y08 | The Control Of The False Discovery Rate In Multiple Testing Under Dependency                                                         | 644      | 21    |
| y08 | A Direct Approach To False Discovery Rates                                                                                           | 555      | 5     |
| y09 | Sparse Inverse Covariance Estimation With The Graphical Lasso                                                                        | 754      | 2     |
| y09 | High-Dimensional Graphs And Variable Selection With The Lasso                                                                        | 885      | 12    |
| y09 | Model Selection And Estimation In The Gaussian Graphical Model                                                                       | 477      | 8     |
| y10 | Bayesian Analysis Of Some Nonparametric Problems                                                                                     | 1373     | 4     |
| y10 | A Constructive Definition Of Dirichlet Priors                                                                                        | 711      | 6     |
| y10 | Bayesian Density-Estimation And Inference Using Mixtures                                                                             | 724      | 12    |
| y11 | Sliced Inverse Regression For Dimension Reduction                                                                                    | 930      | 29    |
| y11 | Sliced Inverse Regression For Dimension Reduction - Comment                                                                          | 488      | 4     |
| y11 | An Adaptive Estimation Of Dimension Reduction Space                                                                                  | 472      | 25    |
| y12 | Regularization Paths For Generalized Linear Models Via Coordinate Descent                                                            | 1124     | 15    |
| y12 | Regularization And Variable Selection Via The Elastic Net                                                                            | 1584     | 11    |
| y12 | Least Angle Regression                                                                                                               | 1259     | 10    |
| y13 | Regression Shrinkage And Selection Via The Lasso                                                                                     | 4759     | 8     |
| y13 | Regularization And Variable Selection Via The Elastic Net                                                                            | 1584     | 11    |
| y13 | Least Angle Regression                                                                                                               | 1259     | 10    |
| y14 | An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach | 512      | 55    |
| y14 | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                       | 812      | 109   |
| y14 | Stationary Process Approximation For The Analysis Of Large Spatial Datasets                                                          | 380      | 18    |
| y15 | Empirical Likelihood Ratio Confidence-Intervals For A Single Functional                                                              | 1115     | 6     |
| y15 | Empirical Likelihood Ratio Confidence-Regions                                                                                        | 913      | 14    |
| y15 | Empirical Likelihood And General Estimating Equations                                                                                | 877      | 17    |
| y16 | Longitudinal Data-Analysis Using Generalized Linear-Models                                                                           | 2624     | 11    |
| y16 | Improving Generalised Estimating Equations Using Quadratic Inference<br>Functions                                                    | 235      | 13    |
| y16 | Longitudinal Data-Analysis For Discrete And Continuous Outcomes                                                                      | 516      | 16    |
| y17 | Functional Data Analysis For Sparse Longitudinal Data                                                                                | 640      | 24    |
| y17 | Functional Linear Regression Analysis For Longitudinal Data                                                                          | 342      | 19    |
| y17 | Methodology And Convergence Rates For Functional Linear Regression                                                                   | 295      | 12    |
| y18 | A Class Of Distributions Which Includes The Normal Ones                                                                              | 886      | 5     |
| y18 | The Multivariate Skew-Normal Distribution                                                                                            | 632      | 8     |
| y18 | Statistical Applications Of The Multivariate Skew Normal Distribution                                                                | 490      | 6     |

Table 32: Y (incoming citation) factor hubs - k = 30,  $\ell_z = 1$ ,  $\ell_y = 1$  (continued)

| ID  | Title                                                                                                                           | Cited by | Cites |
|-----|---------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| y19 | Regression Quantiles                                                                                                            | 1603     | 21    |
| y19 | Bayesian Quantile Regression                                                                                                    | 286      | 7     |
| y19 | Composite Quantile Regression And The Oracle Model Selection Theory                                                             | 291      | 6     |
| y20 | Bayes Factors                                                                                                                   | 1553     | 56    |
| y20 | Variable Selection Via Gibbs Sampling                                                                                           | 781      | 8     |
| y20 | The Bayesian Lasso                                                                                                              | 568      | 11    |
| y21 | Inference And Missing Data                                                                                                      | 1905     | 9     |
| y21 | Estimation Of Regression-Coefficients When Some Regressors Are Not Always<br>Observed                                           | 1034     | 21    |
| y21 | Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse Models                                                     | 480      | 35    |
| y22 | Closed Testing Procedures With Special Reference To Ordered Analysis Of Variance                                                | 557      | 6     |
| y22 | Evaluation Of Experiments With Adaptive Interim Analyses                                                                        | 277      | 7     |
| y22 | Adaptive Sample Size Calculations In Group Sequential Trials                                                                    | 241      | 16    |
| y23 | Flexible Smoothing With B-Splines And Penalties                                                                                 | 1074     | 7     |
| y23 | Approximate Inference In Generalized Linear Mixed Models                                                                        | 1345     | 41    |
| y23 | Random-Effects Models For Longitudinal Data                                                                                     | 1540     | 11    |
| y24 | On The Distribution Of The Largest Eigenvalue In Principal Components<br>Analysis                                               | 486      | 7     |
| y24 | Covariance Regularization By Thresholding                                                                                       | 399      | 20    |
| y24 | Regularized Estimation Of Large Covariance Matrices                                                                             | 392      | 14    |
| y25 | Monte-Carlo Sampling Methods Using Markov Chains And Their Applications                                                         | 1431     | 4     |
| y25 | Sampling-Based Approaches To Calculating Marginal Densities                                                                     | 1695     | 9     |
| y25 | Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model Determination                                           | 1193     | 12    |
| y26 | Generalized Partially Linear Single-Index Models                                                                                | 522      | 12    |
| y26 | Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially<br>Linear Models                                  | 360      | 24    |
| y26 | Penalized Spline Estimation For Partially Linear Single-Index Models                                                            | 329      | 17    |
| y27 | Estimation Of Regression-Coefficients When Some Regressors Are Not Always<br>Observed                                           | 1034     | 21    |
| y27 | A Generalization Of Sampling Without Replacement From A Finite Universe                                                         | 1160     | 5     |
| y27 | Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data | 416      | 28    |
| y28 | Estimating Individualized Treatment Rules Using Outcome Weighted Learning                                                       | 280      | 20    |
| y28 | A Robust Method For Estimating Optimal Treatment Regimes                                                                        | 210      | 16    |
| y28 | Performance Guarantees For Individualized Treatment Rules                                                                       | 219      | 22    |
| y29 | Ridge Regression - Biased Estimation For Nonorthogonal Problems                                                                 | 1402     | 7     |
| y29 | Regularization And Variable Selection Via The Elastic Net                                                                       | 1584     | 11    |
| y29 | Performance Of Some New Ridge Regression Estimators                                                                             | 233      | 11    |
| y30 | Estimation In A Cox Proportional Hazards Cure Model                                                                             | 279      | 10    |
| y30 | Survival Curve For Cancer Patients Following Treatment                                                                          | 319      | 3     |
| y30 | A Mixture Model Combining Logistic-Regression With Proportional Hazards<br>Regression                                           | 258      | 5     |

## Table 32: Y (incoming citation) factor hubs - k = 30, $\ell_z$ = 1, $\ell_y$ = 1 (continued)

| y01         Variable Selection Via Nonconcave Penalized Likelihood And Its Oracle         2804           Properties         Lasso And Its Oracle Properties         2052           y01         The Adaptive Lasso And Its Oracle Properties         2052           y01         Nearly Unbiased Variable Selection Under Minimax Concave Penalty         987           y02         Sure Independence Screening For Ultrahigh Dimensional Feature Space         905           y03         Bayesian Measures Of Model Complexity And Fit         2107           y03         Bayesian Measures Of Model Complexity And Fit         2107           y03         Bayesian Measures Of Model Complexity And Fit         2107           y04         On Asymptotically Optimal Confidence Regions And Tests For         360           y04         Simultaneous Analysis Of Lasso And Dantzig Selector         617           y05         Regression-Models For Counting-Processes - A Large Sample Study         1218           y05         Nonparametric-Estimation From Incomplete Observational         364           y06         Model-Based Clustering, Discriminat Analysis, And Density Estimation         594           y06         Some Comments On CP         770           y07         The Central Role Of The Propensity Score In Observational Studies For Causal         1497           Effects <td< th=""><th>ID</th><th>Title</th><th>Cited by</th><th>Cites</th></td<>                                                                                                                                                                                                                                           | ID  | Title                                                                        | Cited by | Cites |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------|----------|-------|
| 901         The Adaptive Lasso And Its Oracle Properties         2052           901         Nearly Unbiased Variable Selection Under Minimax Concave Penalty         397           902         Sure Independence Screening For Ultrahigh Dimensional Feature Space         905           902         Sure Independence Screening In Generalized Linear Models With         305           903         Bayesian Measures Of Model Complexity And Fit         2107           903         Bayesian Image-Restoration, With 2 Applications In Spatial Statistics         797           904         On A Article By Browne And Draper)         306           904         Simultaneous Analysis Of Lasso And Dantzig Selector         617           904         Simultaneous Analysis Of Lasso And Dantzig Selector         617           905         Confidence Intervals For Low Dimensional Parameters In High Dimensional         350           904         Simultaneous Analysis Of Lasso And Dantzig Selector         617           905         Regression Models For Counting-Processes - A Large Sample Study         1218           905         Nonparametric-Estimation From Incomplete Observational Studies For Causal Effects         1497           906         Some Comments On Cp         770           907         The Central Role Of The Propensity Score In Osternative Strategies For         116                                                                                                                                                                                                                                                                                                        | y01 |                                                                              | 2804     | 14    |
| y02         Sure Independence Screening For Ultrahigh Dimensional Feature Space         905           y02         Feature Screening Via Distance Correlation Learning         327           y03         Sure Independence Screening In Generalized Linear Models With         305           y04         Sure Independence Screening In Generalized Linear Models With         305           y03         Bayesian Image-Restoration, With 2 Applications In Spatial Statistics         797           y04         On A Article By Browne And Draper)         Bayesian Image-Restoration, With 2 Applications In Spatial Statistics         797           y04         On Asymptotically Optimal Confidence Regions And Tests For         360         360           High-Dimensional Models         407         Simultaneous Analysis Of Lasso And Dantzig Selector         617           y05         Korgression-Models For Counting-Processes - A Large Sample Study         1218         777           y05         Nonparametric-Estimation From Incomplete Observations         1853         777           y04         Some Comments On Cp         770         770           y05         Stratification And Weighting Via The Propensity Score In Diservational Studies For Causal Effects         374           y05         Stratification And Weighting Via The Propensity Score In Estimation Of Causal 374         776           y04                                                                                                                                                                                                                                                                               | y01 | -                                                                            | 2052     | 14    |
| 902       Feature Screening Via Distance Correlation Learning       327         902       Sure Independence Screening In Generalized Linear Models With       305         903       Bayesian Measures Of Model Complexity And Fit       2107         904       Prior Distributions For Variance Parameters In Hierarchical Models(Comment       906         903       Bayesian Image-Restoration, With 2 Applications In Spatial Statistics       797         904       On Asymptotically Optimal Confidence Regions And Tests For       360         904       Confidence Intervals For Low Dimensional Parameters In High Dimensional       350         1.inear Models       104       Simultaneous Analysis Of Lasso And Dantzig Selector       617         905       Regression-Model For Counting-Processes - A Large Sample Study       1218         905       Nonparametric-Estimation From Incomplete Observations       1853         906       Stimating Dimension Of A Model       3727         906       Model-Based Clustering, Discriminant Analysis, And Density Estimation       770         907       The Central Role Of The Propensity Score In Observational Studies For Causal       1497         Effects       A Comparative Study       301       334         907       Stratification And Weighting Via The Propensity Score In Estimation Of Causal       334                                                                                                                                                                                                                                                                                                                                   | y01 | Nearly Unbiased Variable Selection Under Minimax Concave Penalty             | 987      | 36    |
| 902       Sure Independence Screening In Generalized Linear Models With       305         903       Bayesian Measures Of Model Complexity And Fit       2107         904       Prior Distributions For Variance Parameters In Hierarchical Models(Comment       906         903       Bayesian Image-Restoration, With 2 Applications In Spatial Statistics       797         904       On Asymptotically Optimal Confidence Regions And Tests For       360         High-Dimensional Models       906         904       Confidence Intervals For Low Dimensional Parameters In High Dimensional       350         Linear Models       1218         904       Simultaneous Analysis Of Lasso And Dantzig Selector       617         905       Cox Regression-Model For Counting-Processes - A Large Sample Study       1218         905       Nonparametric-Estimation From Incomplete Observations       1853         906       Estimating Dimension Of A Model       594         907       The Central Role Of The Propensity Score In Observational Studies For Causal       1497         Effects       A Comparative Study       202         907       The Control Of The Palse Discovery Rate - A Practical And Powerful Approach To       2025         904       Toentrol The False Discovery Rates       555         907       The Control Of The False Discovery                                                                                                                                                                                                                                                                                                                                               | y02 | Sure Independence Screening For Ultrahigh Dimensional Feature Space          | 905      | 33    |
| Np-Dimensionality         2107           y03         Bayesian Measures Of Model Complexity And Fit         2107           y03         Prior Distributions For Variance Parameters In Hierarchical Models(Comment<br>On An Article By Browne And Draper)         906           y03         Bayesian Image-Restoration, With 2 Applications In Spatial Statistics         797           y04         On Asymptotically Optimal Confidence Regions And Tests For<br>High-Dimensional Models         360           y04         Simultaneous Analysis Of Lasso And Dantzig Selector         617           y05         Regression-Model For Counting-Processes - A Large Sample Study         1218           y05         Nonparametric-Estimation From Incomplete Observations         1853           y06         Estimating Dimension Of A Model         3727           y06         Some Comments On Cp         770           y07         The Central Role Of The Propensity Score In Observational Studies For Causal         1497           Effects         A Comparative Study         2025           y07         Stratification And Weighting Via The Propensity Score In Estimation Of Causal         334           Treatment Effects: A Comparative Study         2025         416           y08         Controlling The False Discovery Rate - A Practical And Powerful Approach To         2025           y041                                                                                                                                                                                                                                                                                                       |     | 8                                                                            |          | 22    |
| 903         Prior Distributions For Variance Parameters In Hierarchical Models(Comment<br>On An Article By Browne And Draper)         906           903         Bayesian Image-Restoration, With 2 Applications In Spatial Statistics         797           904         On Asymptotically Optimal Confidence Regions And Tests For<br>High-Dimensional Models         360           904         Confidence Intervals For Low Dimensional Parameters In High Dimensional<br>Linear Models         350           904         Simultaneous Analysis Of Lasso And Dantzig Selector         617           905         Regression-Model For Counting-Processes - A Large Sample Study         1218           905         Nonparametric-Estimation From Incomplete Observations         1853           906         Some Comments On Cp         770           907         The Central Role Of The Propensity Score In Observational Studies For Causal<br>Effects         1497           907         Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study         2025           907         Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Multiple Testing         2025           907         Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Multiple Testing         2035           908         The Control Of The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing         2025                                                                                                                                                                            | y02 |                                                                              | 305      | 24    |
| On An Article By Browne And Draper)       797         y03       Bayesian Image-Restoration, With 2 Applications In Spatial Statistics       797         y04       On Asymptotically Optimal Confidence Regions And Tests For High-Dimensional Models       360         y04       Confidence Intervals For Low Dimensional Parameters In High Dimensional Linear Models       350         y04       Simultaneous Analysis Of Lasso And Dantzig Selector       617         y05       Regression-Model For Counting-Processes - A Large Sample Study       1218         y05       Nonparametric-Estimation From Incomplete Observations       1853         y06       Estimating Dimension Of A Model       3727         y06       Model-Based Clustering, Discriminant Analysis, And Density Estimation       594         y07       The Central Role Of The Propensity Score In Observational Studies For Causal       1497         y07       The Central Role Of The Propensity Score In Observational Studies For Causal       334         y08       Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing       2025         y08       A Direct Approach To False Discovery Rate In Multiple Testing Under Dependency       644         y08       A Direct Approach To False Discovery Rate is A Direct Approach                                                                                                                                                                                                                      | y03 | Bayesian Measures Of Model Complexity And Fit                                | 2107     | 38    |
| 940       On Asymptotically Optimal Confidence Regions And Tests For       360         951       Confidence Intervals For Low Dimensional Parameters In High Dimensional       350         954       Confidence Intervals For Low Dimensional Parameters In High Dimensional       350         954       Simultaneous Analysis Of Lasso And Dantzig Selector       617         955       Regression-Model For Counting-Processes - A Large Sample Study       1218         955       Nonparametric-Estimation From Incomplete Observations       1853         956       Estimating Dimension Of A Model       3727         956       Model-Based Clustering, Discriminant Analysis, And Density Estimation       594         956       Some Comments On Cp       770         957       The Central Role Of The Propensity Score In Observational Studies For Causal       1497         956       Estimating A Population Mean From Incomplete Data       334         957       Treatment Effects:       A Omparative Study       2025         958       Controlling The False Discovery Rate - A Practical And Powerful Approach To       2025         959       Sparse Inverse Covariance Estimation With The Graphical Lasso       754         959       Model Selection And Estimation In The Gaussian Graphical Model       477         950       High-Dimensional Graphs And Variabl                                                                                                                                                                                                                                                                                                                              | y03 | On An Article By Browne And Draper)                                          | 906      | 28    |
| High-Dimensional Models350V04Confidence Intervals For Low Dimensional Parameters In High Dimensional<br>Linear Models350v05Regression-Model S And Life-Tables4087v05Regression-Model For Counting-Processes - A Large Sample Study<br>V151218v05Nonparametric-Estimation From Incomplete Observations1853v06Estimating Dimension Of A Model<br>Model-Based Clustering, Discriminant Analysis, And Density Estimation594v06Some Comments On Cp770v07The Central Role Of The Propensity Score In Observational Studies For Causal<br>Effects1497v07Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study<br>V07334v08Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing2025v08Sparse Inverse Covariance Estimation With The Graphical Lasso<br>V09855v09Sparse Inverse Covariance Estimation In The Gaussian Graphical Model477v10Bayesian Analysis Of Some Nonparametric Problems1373v10A Constructive Definition of Dirichlet Priors<br>V11711v10Bayesian Analysis Of Some Nonparametric Problems1373v11Sliced Inverse Regression For Dimension Reduction<br>V11930v11Sliced Inverse Regression For Dimension Reduction<br>V11930v12Regularization And Variable Selection Via The Elastic Net<br>V121584v13Regression Shrinkage And Selection Via The Elastic Net<br>V121584v14                                                                                                                                                                                                                                                                                                                         | y03 | Bayesian Image-Restoration, With 2 Applications In Spatial Statistics        | 797      | ;     |
| Linear Models617904Simultaneous Analysis Of Lasso And Dantzig Selector617905Regression-Model For Counting-Processes - A Large Sample Study1218905Cox Regression-Model For Counting-Processes - A Large Sample Study1218905Nonparametric-Estimation From Incomplete Observations1853906Estimating Dimension Of A Model3727906Model-Based Clustering, Discriminant Analysis, And Density Estimation594907The Central Role Of The Propensity Score In Observational Studies For Causal1497907EffectsA Comparative Study334907The Central Role Of The Propensity Score In Estimation Of Causal334908Treatment Effects: A Comparative Study907909Demystifying Double Robustness: A Comparison Of Alternative Strategies For416908Estimating A Population Mean From Incomplete Data2025908The Control Of The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing2025908Sparse Inverse Covariance Estimation With The Graphical Lasso754919High-Dimensional Graphs And Variable Selection With The Lasso885920Model Selection And Estimation AI Inference Using Mixtures724921Bayesian Analysis Of Some Nonparametric Problems1373921A Constructive Definition Of Dimension Reduction930931Sliced Inverse Regression For Dimension Reduction Space724941Sliced Inverse Regression For Dimension Reduction Space472 <td>y04</td> <td></td> <td>360</td> <td>3</td>                                                                                                                                                                                                                                                                                                                                 | y04 |                                                                              | 360      | 3     |
| y05Regression Models And Life-Tables4087y05Cox Regression-Model For Counting-Processes - A Large Sample Study1218y05Nonparametric-Estimation From Incomplete Observations1853y06Estimating Dimension Of A Model3727y06Model-Based Clustering, Discriminant Analysis, And Density Estimation594y07The Central Role Of The Propensity Score In Observational Studies For Causal1497effectsStratification And Weighting Via The Propensity Score In Estimation Of Causal334y07Treatment Effects: A Comparative Study2025y08Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing2025y08The Control Of The False Discovery Rate In Multiple Testing Under Dependency<br>of Multiple Testing644y08Sparse Inverse Covariance Estimation With The Graphical Lasso754y09Model Selection And Estimation In The Gaussian Graphical Model477y10Bayesian Analysis Of Some Nonparametric Problems711y10Bayesian Density-Estimation And Inference Using Mixtures724y11Sliced Inverse Regression For Dimension Reduction - Comment488y11An Adaptive Estimation Of Dimension Reduction Space472y12Regularization And Variable Selection Via The Elastic Net<br>Regularization And Variable Selection Via The Ela                                                                                                                                                                                                                         | y04 |                                                                              | 350      | 3     |
| V05Cox Regression-Model For Counting-Processes - A Large Sample Study1218V05Nonparametric-Estimation From Incomplete Observations1853V06Estimating Dimension Of A Model3727V07Model-Based Clustering, Discrimiant Analysis, And Density Estimation594V07The Central Role Of The Propensity Score In Observational Studies For Causal1497EffectsSome Comments On Cp770V07The Central Role Of The Propensity Score In Deservational Studies For Causal1497EffectsComparative Study2025V07Demystifying Double Robustness: A Comparison Of Alternative Strategies For416Estimating A Population Mean From Incomplete Data2025V08Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing2025V09Sparse Inverse Covariance Estimation With The Graphical Lasso754V19High-Dimensional Graphs And Variable Selection With The Lasso885V10Bayesian Analysis Of Some Nonparametric Problems711V10Bayesian Density-Estimation And Inference Using Mixtures724V11Sliced Inverse Regression For Dimension Reduction - Comment488V11Sliced Inverse Regression For Dimension Reduction Space472V12Regularization And Variable Selection Via The Elastic Net1584V11Regularization And Variable Selection Via The Elastic Net1584V11Regularization And Variable Selection Via The Elastic Net1584V11Regularization And Variable Selecti                                                                                                                                                                                                                                                                                                                                                          | y04 | Simultaneous Analysis Of Lasso And Dantzig Selector                          | 617      | 1     |
| V05Cox Regression-Model For Counting-Processes - A Large Sample Study1218V05Nonparametric-Estimation From Incomplete Observations1853V06Estimating Dimension Of A Model3727V07Model-Based Clustering, Discriminant Analysis, And Density Estimation594V07The Central Role Of The Propensity Score In Observational Studies For Causal1497EffectsEffects334V07Stratification And Weighting Via The Propensity Score In Estimation Of Causal334Treatment Effects:A Comparative Study416V07Demystifying Double Robustness: A Comparison Of Alternative Strategies For416Estimating A Population Mean From Incomplete Data2025V08Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing2025V09Sparse Inverse Covariance Estimation With The Graphical Lasso754V19High-Dimensional Graphs And Variable Selection With The Lasso885V10Bayesian Analysis Of Some Nonparametric Problems711V10Bayesian Density-Estimation And Inference Using Mixtures724V11Sliced Inverse Regression For Dimension Reduction - Comment488V11Sliced Inverse Regression For Dimension Reduction Space472V12Regularization And Variable Selection Via The Elastic Net1544V11Regularization And Variable Selection Via The Elastic Net1544V12Least Angle Regression1259V13Regression Shrinkage And Selection Via The Elastic Net1544 </td <td>y05</td> <td>Regression Models And Life-Tables</td> <td>4087</td> <td>2</td>                                                                                                                                                                                                                                                                               | y05 | Regression Models And Life-Tables                                            | 4087     | 2     |
| And<br>A Department3727<br>Model-Based Clustering, Discriminant Analysis, And Density Estimation3727<br>594706Model-Based Clustering, Discriminant Analysis, And Density Estimation594707Some Comments On Cp770707The Central Role Of The Propensity Score In Observational Studies For Causal<br>Effects1497707Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study<br>(70334707Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data416708Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing2025708The Control Of The False Discovery Rate In Multiple Testing Under Dependency<br>A Direct Approach To False Discovery Rates555709Sparse Inverse Covariance Estimation With The Graphical Lasso<br>Model Selection And Estimation In The Gaussian Graphical Model477710Bayesian Analysis Of Some Nonparametric Problems<br>A Constructive Definition Of Dirichlet Priors<br>Sticed Inverse Regression For Dimension Reduction<br>Sliced Inverse Regression For Dimension Reduction - Comment<br>An Adaptive Estimation Of Dimension Reduction Space472712Regularization And Variable Selection Via The Elastic Net<br>Least Angle Regression1259713Regularization And Variable Selection Via The Elastic Net1584714An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach1584                                                                                                                                                               | 705 | Cox Regression-Model For Counting-Processes - A Large Sample Study           | 1218     | 1     |
| Model-Based Clustering, Discriminant Analysis, And Density Estimation594700Some Comments On Cp770701The Central Role Of The Propensity Score In Observational Studies For Causal<br>Effects1497702Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study334705Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study334707Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data2025708Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing2025708The Control Of The False Discovery Rate In Multiple Testing Under Dependency<br>A Direct Approach To False Discovery Rates644709High-Dimensional Graphs And Variable Selection With The Lasso<br>Model Selection And Estimation In The Gaussian Graphical Model477710Bayesian Analysis Of Some Nonparametric Problems<br>Silced Inverse Regression For Dimension Reduction<br>Silced Inverse Regression For Dimension Reduction - Comment<br>An Adaptive Estimation Of Dirichlet Priors<br>Silced Inverse Regression For Dimension Reduction Space1124712Regularization And Variable Selection Via The Elastic Net<br>Least Angle Regression1259713Regularization And Variable Selection Via The Elastic Net<br>Least Angle Regression1259714An Adaptive Estimation Of Dimension Reduction - Comment<br>Least Angle Regression488715Regularization And Variable Selection Via The Elastic Net <t< td=""><td>v05</td><td>Nonparametric-Estimation From Incomplete Observations</td><td>1853</td><td>1</td></t<> | v05 | Nonparametric-Estimation From Incomplete Observations                        | 1853     | 1     |
| 606Some Comments On Cp770707The Central Role Of The Propensity Score In Observational Studies For Causal<br>Effects1497708Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study<br>Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data314708Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing2025709The Control Of The False Discovery Rate In Multiple Testing Under Dependency<br>A Direct Approach To False Discovery Rates644709High-Dimensional Graphs And Variable Selection With The Graphical Lasso<br>Model Selection And Estimation In The Gaussian Graphical Model754710Bayesian Analysis Of Some Nonparametric Problems<br>A Constructive Definition Of Dirichlet Priors<br>Silced Inverse Regression For Dimension Reduction - Comment<br>An Adaptive Estimation Of Dimension Reduction - Comment<br>An Adaptive Estimation Of Dimension Reduction - Comment<br>An Adaptive Estimation Of Dimension Reduction Space1124712Regularization And Variable Selection Via The Elastic Net<br>Least Angle Regression1125713Regrussion Shrinkage And Selection Via The Elastic Net<br>Least Angle Regression1259714An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach512                                                                                                                                                                                                                                                            | 06  | Estimating Dimension Of A Model                                              | 3727     |       |
| 707The Central Role Of The Propensity Score In Observational Studies For Causal<br>Effects1497707Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study334707Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data416708Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing2025708The Control Of The False Discovery Rate In Multiple Testing Under Dependency<br>A Direct Approach To False Discovery Rates555709Sparse Inverse Covariance Estimation With The Graphical Lasso754709High-Dimensional Graphs And Variable Selection With The Lasso885709Model Selection And Estimation In The Gaussian Graphical Model477710Bayesian Analysis Of Some Nonparametric Problems1373711Bayesian Density-Estimation And Inference Using Mixtures724711Sliced Inverse Regression For Dimension Reduction930711Sliced Inverse Regression For Dimension Reduction Space472712Regularization And Variable Selection Via The Elastic Net1584713Regression Shrinkage And Selection Via The Elastic Net1584714Least Angle Regression1259715Regularization And Variable Selection Via The Elastic Net1584712Regularization And Variable Selection Via The Elastic Net1584713Least Angle Regression1259714An Adaptive Estimation And Selection                                                                                                                                                                                                                                                                                                |     |                                                                              |          | 4     |
| Effects07Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study33407Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data41608Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing202508The Control Of The False Discovery Rate In Multiple Testing Under Dependency<br>A Direct Approach To False Discovery Rates64409A Direct Approach To False Discovery Rates55509Sparse Inverse Covariance Estimation With The Graphical Lasso75409High-Dimensional Graphs And Variable Selection With The Lasso88509Model Selection And Estimation In The Gaussian Graphical Model47710Bayesian Analysis Of Some Nonparametric Problems137310A Constructive Definition Of Dirichlet Priors71111Bayesian Density-Estimation And Inference Using Mixtures72412Sliced Inverse Regression For Dimension Reduction93013Sliced Inverse Regression For Dimension Reduction Space47214Regularization And Variable Selection Via The Elastic Net158412Least Angle Regression125913Regression Shrinkage And Selection Via The Elastic Net158414Least Angle Regression125914An Explicit Link Between Gausaan Fields And Gaussian Markov Random Fields:51215The Stochastic Partial Differential Equation Approach1259 <td>06</td> <td>Some Comments On Cp</td> <td>770</td> <td>1</td>                                                                                                                                                                                                                                                                 | 06  | Some Comments On Cp                                                          | 770      | 1     |
| Treatment Effects: A Comparative Study41607Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data41608Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing202508The Control Of The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing202508The Control Of The False Discovery Rate In Multiple Testing Under Dependency<br>Sparse Inverse Covariance Estimation With The Graphical Lasso64409High-Dimensional Graphs And Variable Selection With The Lasso88509Model Selection And Estimation In The Gaussian Graphical Model47710Bayesian Analysis Of Some Nonparametric Problems137311Bayesian Density-Estimation And Inference Using Mixtures72411Sliced Inverse Regression For Dimension Reduction93012Regularization Paths For Generalized Linear Models Via Coordinate Descent112412Regularization And Variable Selection Via The Elastic Net158413Regression Shrinkage And Selection Via The Lasso475913Regression Shrinkage And Selection Via The Elastic Net158414Least Angle Regression125914An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:51214An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:512                                                                                                                                                                                                                                                                                                                                                                                                 | 07  | - •                                                                          | 1497     | 1     |
| Estimating A Population Mean From Incomplete Data08Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing202508The Control Of The False Discovery Rate In Multiple Testing Under Dependency<br>A Direct Approach To False Discovery Rates64408A Direct Approach To False Discovery Rates55509Sparse Inverse Covariance Estimation With The Graphical Lasso75419High-Dimensional Graphs And Variable Selection With The Lasso885109Model Selection And Estimation In The Gaussian Graphical Model47710Bayesian Analysis Of Some Nonparametric Problems137310A Constructive Definition Of Dirichlet Priors711210Bayesian Density-Estimation And Inference Using Mixtures724111Sliced Inverse Regression For Dimension Reduction930121Sliced Inverse Regression For Dimension Reduction Space472121Regularization Paths For Generalized Linear Models Via Coordinate Descent1124122Regularization And Variable Selection Via The Elastic Net1584123Least Angle Regression125913Regression Shrinkage And Selection Via The Elastic Net158414Least Angle Regression125914An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:51214An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:512                                                                                                                                                                                                                                                                                                                                                                                                                                            | 707 | Treatment Effects: A Comparative Study                                       | 334      |       |
| Multiple Testing644708The Control Of The False Discovery Rate In Multiple Testing Under Dependency644708A Direct Approach To False Discovery Rates555709Sparse Inverse Covariance Estimation With The Graphical Lasso754709High-Dimensional Graphs And Variable Selection With The Lasso885709Model Selection And Estimation In The Gaussian Graphical Model477710Bayesian Analysis Of Some Nonparametric Problems1373710A Constructive Definition Of Dirichlet Priors711711Bayesian Density-Estimation And Inference Using Mixtures724711Sliced Inverse Regression For Dimension Reduction930711Sliced Inverse Regression For Dimension Reduction Space472712Regularization Paths For Generalized Linear Models Via Coordinate Descent1124712Regularization And Variable Selection Via The Elastic Net1584713Regression Shrinkage And Selection Via The Elastic Net1584714Least Angle Regression1259715Regularization And Variable Selection Via The Elastic Net1584713Least Angle Regression1259714An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:512714The Stochastic Partial Differential Equation Approach512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 707 |                                                                              | 416      | 2     |
| 708The Control Of The False Discovery Rate In Multiple Testing Under Dependency644A Direct Approach To False Discovery Rates555709Sparse Inverse Covariance Estimation With The Graphical Lasso754709High-Dimensional Graphs And Variable Selection With The Lasso885709Model Selection And Estimation In The Gaussian Graphical Model477710Bayesian Analysis Of Some Nonparametric Problems1373710A Constructive Definition Of Dirichlet Priors711710Bayesian Density-Estimation And Inference Using Mixtures724711Sliced Inverse Regression For Dimension Reduction930711Sliced Inverse Regression For Dimension Reduction - Comment488711Sliced Inverse Regression For Dimension Reduction Space472712Regularization Paths For Generalized Linear Models Via Coordinate Descent1124712Regularization And Variable Selection Via The Elastic Net1584713Regression Shrinkage And Selection Via The Lasso4759713Regularization And Variable Selection Via The Elastic Net1584713Least Angle Regression1259714An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /08 | • • • • • • • • • • • • • • • • • • • •                                      | 2025     |       |
| 709Sparse Inverse Covariance Estimation With The Graphical Lasso754709High-Dimensional Graphs And Variable Selection With The Lasso885709Model Selection And Estimation In The Gaussian Graphical Model477710Bayesian Analysis Of Some Nonparametric Problems1373710A Constructive Definition Of Dirichlet Priors711710Bayesian Density-Estimation And Inference Using Mixtures724711Sliced Inverse Regression For Dimension Reduction930711Sliced Inverse Regression For Dimension Reduction - Comment488712Regularization Paths For Generalized Linear Models Via Coordinate Descent1124712Regularization And Variable Selection Via The Elastic Net1584713Regression Shrinkage And Selection Via The Lasso4759713Regularization And Variable Selection Via The Elastic Net1584714Least Angle Regression1259715An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | The Control Of The False Discovery Rate In Multiple Testing Under Dependency |          | 2     |
| High-Dimensional Graphs And Variable Selection With The Lasso885Model Selection And Estimation In The Gaussian Graphical Model477Bayesian Analysis Of Some Nonparametric Problems1373A Constructive Definition Of Dirichlet Priors711Bayesian Density-Estimation And Inference Using Mixtures724Sliced Inverse Regression For Dimension Reduction930V11Sliced Inverse Regression For Dimension Reduction - Comment488V11An Adaptive Estimation Of Dimension Reduction Space472V12Regularization Paths For Generalized Linear Models Via Coordinate Descent1124V12Regularization And Variable Selection Via The Elastic Net1584V13Regression Shrinkage And Selection Via The Elastic Net1584V13Least Angle Regression1259V14An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:512V14An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 708 | A Direct Approach To False Discovery Rates                                   | 555      |       |
| Model Selection And Estimation In The Gaussian Graphical Model47710Bayesian Analysis Of Some Nonparametric Problems137311A Constructive Definition Of Dirichlet Priors71112Bayesian Density-Estimation And Inference Using Mixtures72413Sliced Inverse Regression For Dimension Reduction93014Sliced Inverse Regression For Dimension Reduction - Comment48815An Adaptive Estimation Of Dimension Reduction Space47212Regularization Paths For Generalized Linear Models Via Coordinate Descent112412Regularization And Variable Selection Via The Elastic Net158413Regression Shrinkage And Selection Via The Elastic Net158414Least Angle Regression125915Regularization And Variable Selection Via The Elastic Net158416Least Angle Regression125917An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:51217The Stochastic Partial Differential Equation Approach512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /09 | Sparse Inverse Covariance Estimation With The Graphical Lasso                | 754      |       |
| 10Bayesian Analysis Of Some Nonparametric Problems137311A Constructive Definition Of Dirichlet Priors71112Bayesian Density-Estimation And Inference Using Mixtures72413Sliced Inverse Regression For Dimension Reduction93014Sliced Inverse Regression For Dimension Reduction - Comment48815An Adaptive Estimation Of Dimension Reduction Space47216Regularization Paths For Generalized Linear Models Via Coordinate Descent112417Regularization And Variable Selection Via The Elastic Net158417Least Angle Regression125917Regularization And Variable Selection Via The Elastic Net158417Least Angle Regression125917Regularization And Variable Selection Via The Elastic Net158417Least Angle Regression125917Regularization And Variable Selection Via The Elastic Net158417Least Angle Regression125918Regression Shrinkage And Selection Via The Elastic Net158419Least Angle Regression125911An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:51214An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:51214An Explicit Link Differential Equation Approach512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                              |          | 1     |
| A Constructive Definition Of Dirichlet Priors71110Bayesian Density-Estimation And Inference Using Mixtures72411Sliced Inverse Regression For Dimension Reduction93011Sliced Inverse Regression For Dimension Reduction - Comment48811An Adaptive Estimation Of Dimension Reduction Space47212Regularization Paths For Generalized Linear Models Via Coordinate Descent112412Regularization And Variable Selection Via The Elastic Net158412Least Angle Regression125913Regression Shrinkage And Selection Via The Lasso475914An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:51214An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09  | Model Selection And Estimation In The Gaussian Graphical Model               | 477      |       |
| 10Bayesian Density-Estimation And Inference Using Mixtures72411Sliced Inverse Regression For Dimension Reduction93011Sliced Inverse Regression For Dimension Reduction - Comment48811An Adaptive Estimation Of Dimension Reduction Space47212Regularization Paths For Generalized Linear Models Via Coordinate Descent112412Regularization And Variable Selection Via The Elastic Net158412Least Angle Regression125913Regression Shrinkage And Selection Via The Lasso475914Least Angle Regression125915Regularization And Variable Selection Via The Elastic Net158415Least Angle Regression125914An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:51214The Stochastic Partial Differential Equation Approach512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10  |                                                                              | 1373     |       |
| Sliced Inverse Regression For Dimension Reduction930Sliced Inverse Regression For Dimension Reduction - Comment488An Adaptive Estimation Of Dimension Reduction Space472Regularization Paths For Generalized Linear Models Via Coordinate Descent1124Regularization And Variable Selection Via The Elastic Net1584Least Angle Regression1259Regularization And Variable Selection Via The Lasso4759Regularization And Variable Selection Via The Elastic Net1584Least Angle Regression1259An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:512The Stochastic Partial Differential Equation Approach512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |                                                                              |          | 1     |
| 11Sliced Inverse Regression For Dimension Reduction - Comment488An Adaptive Estimation Of Dimension Reduction Space47212Regularization Paths For Generalized Linear Models Via Coordinate Descent112412Regularization And Variable Selection Via The Elastic Net158412Least Angle Regression125913Regression Shrinkage And Selection Via The Elastic Net158414Least Angle Regression125915Regularization And Variable Selection Via The Elastic Net158416Least Angle Regression125917Regularization And Variable Selection Via The Elastic Net158418Least Angle Regression125919An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:51214An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                              |          |       |
| An Adaptive Estimation Of Dimension Reduction Space47211An Adaptive Estimation Of Dimension Reduction Space47212Regularization Paths For Generalized Linear Models Via Coordinate Descent112412Regularization And Variable Selection Via The Elastic Net158412Least Angle Regression125913Regression Shrinkage And Selection Via The Lasso475913Regularization And Variable Selection Via The Elastic Net158414Least Angle Regression125915Regularization And Variable Selection Via The Elastic Net158416Least Angle Regression125917An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:51214An Explicit Link Differential Equation Approach512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 0                                                                            |          | 2     |
| 12Regularization And Variable Selection Via The Elastic Net158412Least Angle Regression125913Regression Shrinkage And Selection Via The Lasso475913Regularization And Variable Selection Via The Elastic Net158414Least Angle Regression125915An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:51216The Stochastic Partial Differential Equation Approach512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                                                                              |          | 2     |
| 12Regularization And Variable Selection Via The Elastic Net158412Least Angle Regression125913Regression Shrinkage And Selection Via The Lasso475913Regularization And Variable Selection Via The Elastic Net158414Least Angle Regression125915An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:51216Stochastic Partial Differential Equation Approach512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v12 | Regularization Paths For Generalized Linear Models Via Coordinate Descent    | 1124     | 1     |
| 13       Regression Shrinkage And Selection Via The Lasso       4759         13       Regularization And Variable Selection Via The Elastic Net       1584         14       Least Angle Regression       1259         14       An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach       512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | -                                                                            |          | 1     |
| 13       Regularization And Variable Selection Via The Elastic Net       1584         13       Least Angle Regression       1259         14       An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach       512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12  | Least Angle Regression                                                       | 1259     | 1     |
| 713       Regularization And Variable Selection Via The Elastic Net       1584         713       Least Angle Regression       1259         714       An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:       512         The Stochastic Partial Differential Equation Approach       512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13  | Regression Shrinkage And Selection Via The Lasso                             | 4759     |       |
| <ul> <li>An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields: 512</li> <li>The Stochastic Partial Differential Equation Approach</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 0                                                                            |          | 1     |
| The Stochastic Partial Differential Equation Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13  | Least Angle Regression                                                       | 1259     | 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /14 | -                                                                            | 512      | 5     |
| Integrated Nested Laplace Approximations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y14 |                                                                              | 812      | 10    |
| v14         Stationary Process Approximation For The Analysis Of Large Spatial Datasets         380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 714 | Stationary Process Approximation For The Analysis Of Large Spatial Datasets  | 380      | 1     |

Table 33: Y (incoming citation) factor hubs - k = 30,  $\ell_z$  = 25000,  $\ell_y$  = 25000

| P15       Empirical Likelihood Ratio Confidence-Regions       913       1         P15       Empirical Likelihood And General Estimating Equations       877       1         P16       Longitudinal Data-Analysis Using Generalized Linear-Models       2624       1         P16       Longitudinal Data-Analysis For Discrete And Continuous Outcomes       516       1         P17       Functional Linear Regression Analysis For Longitudinal Data       640       2         P17       Functional Linear Regression Analysis For Longitudinal Data       342       1         P17       Functional Linear Regression Canalysis For Longitudinal Data       342       1         P17       Methodology And Convergence Rates For Functional Linear Regression       295       1         P18       A Class Of Distributions Which Includes The Normal Ones       886       1         P18       Regression Quantile Regression       286       1         P19       Regression Quantile Regression And The Oracle Model Selection Theory       291       1         P18       Reference Notal Bising Data       1005       1         P10       Regression-Coefficients When Some Regressors Are Not Always       1034       2         P21       Edifficient Strib Adaptive Interim Analyses       277       27         P22 <th>ID</th> <th>Title</th> <th>Cited by</th> <th>Cites</th>                                                                                           | ID            | Title                                                                     | Cited by | Cites |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------|----------|-------|
| P15       Empirical Likelihood And General Estimating Equations       877       1         P16       Longitudinal Data-Analysis Using Generalized Linear-Models       2624       1         Punctions       215       1         Punctions       235       1         Punctions       235       1         Punctional Data Analysis For Discrete And Continuous Outcomes       516       1         Punctional Linear Regression Analysis For Longitudinal Data       640       2         Punctional Linear Regression Analysis For Fourtional Linear Regression       295       1         Punctional Linear Regression Nullise       663       2       2         It A Class Of Distributions Which Includes The Normal Ones       886       1603       2         P18       Regression Quantiles       1603       2       2         P19       Regression Quantiles       1603       2       2         P19       Regression Contalitie Regression       286       1       2         P10       Regression Contalitie Regression And The Oracle Model Selection Theory       291       1         P20       Bayes Factors       1553       55       2       1       16       16       2         P21       Inference And Missing Data <td< td=""><td>v15</td><td>Empirical Likelihood Ratio Confidence-Intervals For A Single Functional</td><td>1115</td><td>6</td></td<>                                                                                                              | v15           | Empirical Likelihood Ratio Confidence-Intervals For A Single Functional   | 1115     | 6     |
| 16       Longitudinal Data-Analysis Using Generalized Linear-Models       2624       1         17       Improving Generalised Estimating Equations Using Quadratic Inference       235       1         17       Functions       516       1         17       Functional Data Analysis For Discrete And Continuous Outcomes       516       1         17       Functional Linear Regression Analysis For Longitudinal Data       640       2         17       Functional Linear Regression Analysis For Longitudinal Data       640       2         18       A Class Of Distributions Which Includes The Normal Ones       886       5         18       The Multivariate Stew-Normal Distribution       632       2         19       Bayesian Quantile Regression       286       2         19       Bayesian Quantile Regression And The Oracle Model Selection Theory       291       2         20       Bayesian Quantile Regression-Coefficients When Some Regressors Are Not Always       1034       2         21       Inference And Missing Data       1905       3       3         212       Estimation Of Regression-Coefficients When Some Regressors Are Not Always       1034       2         22       Closed Testing Procedures With Adaptive Interim Analyses       277       27         22                                                                                                                                                                     | y15           | Empirical Likelihood Ratio Confidence-Regions                             | 913      | 14    |
| 16       Improving Generalised Estimating Equations Using Quadratic Inference       235       1         17       Functional Data Analysis For Discrete And Continuous Outcomes       516       10         17       Functional Data Analysis For Discrete And Continuous Outcomes       516       10         17       Functional Linear Regression Analysis For Longitudinal Data       640       2         17       Functional Linear Regression Convergence Rates For Functional Linear Regression       295       11         18       A Class Of Distributions Which Includes The Normal Ones       886       21         18       Statistical Applications Of The Multivariate Skew Normal Distribution       600       2         19       Bayesian Quantiles Regression And The Oracle Model Selection Theory       291       201         20       Bayes Factors       1553       5         21       Inference And Missing Data       1905       11         221       Inference And Missing Data       1905       1034       2         221       Inference And Missing Data       1905       1034       2         221       Inference And Missing Data       1905       1034       2         222       Closed Testing Procedures With Special Reference To Ordered Analysis Of Variance       557       1034                                                                                                                                                              | y15           | Empirical Likelihood And General Estimating Equations                     | 877      | 17    |
| Functions       516       1         16       Longitudinal Data-Analysis For Discrete And Continuous Outcomes       516       1         17       Functional Linear Regression Analysis For Longitudinal Data       342       1         17       Methodology And Convergence Rates For Functional Linear Regression       295       1         18       A Class Of Distributions Which Includes The Normal Ones       886         18       The Multivariate Skew-Normal Distribution       632       3         19       Regression Quantiles       1603       2         19       Bayesian Quantile Regression And The Oracle Model Selection Theory       291       3         20       Bayesian Quantile Regression And The Oracle Model Selection Theory       291       3         21       Inference And Missing Data       1035       5         22       Variable Selection Via Gibbs Sampling       781       5         23       Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse       480       3         24       Adjusting For Nonignorable Drop-Out Using Sequential Trials       211       10         25       Evaluation Of Experiments With Adaptive Interim Analyses       277       3         22       Closed Testing Procedures With Special Reference To Ordered Analysis Of Variance                                                                                                                                                       | 16            | Longitudinal Data-Analysis Using Generalized Linear-Models                | 2624     | 11    |
| 17       Functional Linear Regression Analysis For Longitudinal Data       640       2         17       Functional Linear Regression Analysis For Longitudinal Data       342       1         17       Methodology And Convergence Rates For Functional Linear Regression       295       1         18       A Class Of Distributions Which Includes The Normal Ones       886       3         18       The Multivariate Skew-Normal Distribution       490       3         19       Regression Quantiles       1603       2         19       Regression Quantile Regression And The Oracle Model Selection Theory       291       -         20       Bayes Factors       1553       5         20       Variable Selection Via Gibbs Sampling       781       -         21       Inference And Missing Data       1905       -         21       Inference And Missing Data       1905       -         21       Inference Nonignorable Drop-Out Using Semiparametric Nonresponse       480       3         Models       2       -       -       -         22       Closed Testing Procedures With Adaptive Interim Analyses       277       -         23       Approximate Inference In Generalized Linear Mixed Models       1345       4         24                                                                                                                                                                                                                         | 16            |                                                                           | 235      | 13    |
| 17       Functional Linear Regression Analysis For Longitudinal Data       342       1         17       Methodology And Convergence Rates For Functional Linear Regression       295       1         18       A Class Of Distributions Which Includes The Normal Ones       886       1         18       Methodology And Convergence Rates For Functional Linear Regression       603       2         19       Regression Quantile Regression And The Oracle Model Selection Theory       291       2         20       Bayesian Quantile Regression And The Oracle Model Selection Theory       291       2         20       Bayes Factors       1553       5         20       Variable Selection Via Gibbs Sampling       781       2         21       Inference And Missing Data       1905       2         21       Estimation Of Regression-Coefficients When Some Regressors Are Not Always       1034       2         22       Closed Testing Procedures With Special Reference To Ordered Analysis Of<br>Variance       557       2         22       Closed Testing Procedures With Adaptive Interim Analyses       277       2         23       Adaptive Sampling       304       1         24       Adaptive Sample Size Calculations In Group Sequential Trials       241       1         25       Ev                                                                                                                                                              | 16            | Longitudinal Data-Analysis For Discrete And Continuous Outcomes           | 516      | 16    |
| 117       Methodology And Convergence Rates For Functional Linear Regression       295       1         18       A Class Of Distributions Which Includes The Normal Ones       886         18       A Class Of Distributions Which Includes The Normal Ones       886         19       Regression Quantiles       1603       2         19       Bayesian Quantile Regression And The Oracle Model Selection Theory       291       286         20       Bayes Factors       1553       5         21       Inference And Missing Data       1905       2         21       Inference And Missing Data       1905       2         22       Clased Testing Procedures With Special Reference To Ordered Analysis Of S77       7       7         22       Closed Testing Procedures With Adaptive Interim Analyses       277       7         23       Adquive Sampel Size Calculations In Group Sequential Trials       241       1         24       Adaptive Sampel Size Calculations In Group Sequential Trials       241       1         25       Adaptive Sampel Size Calculations In Group Sequential Trials       241       1         26       Closed Testing Procedures With Adaptive Interim Analyses       277       7         272       Closed Testing Procedures In Carolog Sequential Trials       241       <                                                                                                                                                         | $^{\prime}17$ |                                                                           | 640      | 24    |
| 18       A Class Of Distributions Which Includes The Normal Ones       \$86         18       The Multivariate Skew-Normal Distribution       632         18       Statistical Applications Of The Multivariate Skew Normal Distribution       490         19       Regression Quantile Regression And The Oracle Model Selection Theory       291         20       Bayes Factors       1553       5         20       Variable Selection Via Gibbs Sampling       781       -         210       Inference And Missing Data       1905       -         221       Estimation Of Regression-Coefficients When Some Regressors Are Not Always       1034       2         221       Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse       480       3         Models       277       -       -       -       -         222       Closed Testing Procedures With Adaptive Interim Analyses       277       -       -         222       Closed Testing With B-Splines And Penalties       1074       -       -         223       Approximate Inference In Generalized Linear Mixed Models       1343       4       4         233       Approximate Inference In Generalized Linear Mixed Models       1344       4         234       Approximate Inference Relaced Inference Matrices                                                                                                                                                                           |               |                                                                           |          | 19    |
| 18       The Multivariate Skew-Normal Distribution       632         18       Statistical Applications Of The Multivariate Skew Normal Distribution       490         19       Regression Quantile       1603       2         19       Regression Quantile Regression       286       1603       2         19       Composite Quantile Regression And The Oracle Model Selection Theory       291       17         20       Bayes Factors       1553       5         21       Variable Selection Via Gibbs Sampling       751       17         220       Variable Selection Via Gibbs Sampling       751       17         231       Inference And Missing Data       1905       190         241       Inference And Missing Data       1905       1034       2         252       Closed Testing Procedures With Special Reference To Ordered Analysis Of Variance       557       104         252       Closed Testing Procedures With Adaptive Interim Analyses       277       104         253       Apptroximate Inference In Generalized Linear Mixed Models       1345       4         254       Approximate Inference In Generalized Linear Mixed Models       1345       4         264       Covariance Regularization By Thresholding       399       2       1 <td>17</td> <td>Methodology And Convergence Rates For Functional Linear Regression</td> <td>295</td> <td>12</td>                                                                                     | 17            | Methodology And Convergence Rates For Functional Linear Regression        | 295      | 12    |
| 18       Statistical Applications Of The Multivariate Skew Normal Distribution       490         19       Regression Quantiles       1603       2         19       Bayesian Quantile Regression       286         10       Composite Quantile Regression And The Oracle Model Selection Theory       291         20       Bayes Factors       1553       5         20       Variable Selection Via Gibbs Sampling       781       -         20       The Bayesian Lasso       568       1         21       Inference And Missing Data       1905       -         21       Inference And Missing Data       1905       -         21       Inference And Missing Data       1905       -         22       Observed       0       -       -         23       Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse       480       3         24       Adjusting For Nonignorable Drop-Out Using Sequential Trials       241       11         24       Adjustive Sample Size Calculations In Group Sequential Trials       241       11         25       Evaluation Of Experiments With Adaptive Interim Analyses       277       -         24       Parioxinate Inference In Generalized Linear Mixed Models       1345       4                                                                                                                                                                                                                                  |               |                                                                           |          | Ę     |
| 19       Regression Quantiles       1603       2         19       Bayesian Quantile Regression And The Oracle Model Selection Theory       291         20       Bayes Factors       1553       5         20       Variable Selection Via Gibbs Sampling       781       5         20       Variable Selection Via Gibbs Sampling       781       5         20       The Bayesian Lasso       568       1         21       Inference And Missing Data       1905       5         221       Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse Models       304       2         222       Closed Testing Procedures With Special Reference To Ordered Analysis Of Variance       557       57         222       Closed Testing Procedures With Adaptive Interim Analyses       277       57         223       Adaptive Sample Size Calculations In Group Sequential Trials       241       11         233       Flexible Smoothing With B-Splines And Penalties       1074       54         243       Random-Effects Models For Longitudinal Data       1540       1         243       Ragularized Estimation Of The Largest Eigenvalue In Principal Components       486         244       Regularized Estimation Of Large Covariance Matrices       392       1                                                                                                                                                                                            |               |                                                                           |          | 8     |
| 19       Bayesian Quantile Regression       286         19       Composite Quantile Regression And The Oracle Model Selection Theory       291         20       Bayes Factors       1553       5         20       Variable Selection Via Gibbs Sampling       781       -         210       Inference And Missing Data       1905       -         221       Estimation Of Regression-Coefficients When Some Regressors Are Not Always       1034       2         222       Closed Testing Procedures With Special Reference To Ordered Analysis Of       557       -         222       Closed Testing Procedures With Adaptive Interim Analyses       277       -         223       Adaptive Sample Size Calculations In Group Sequential Trials       241       1074         223       Flexible Smoothing With B-Splines And Penalties       1074       -         234       Random-Effects Models For Longitudinal Data       1540       1         243       Poroxinate Inference In Generalized Linear Mixed Models       1345       4         244       On The Distribution Of The Largest Eigenvalue In Principal Components       486       -         244       Quarized Estimation Of Large Covariance Marices       392       1         245       Monte-Carlo Sampling Methods Using Markov Chains And Their Applications </td <td>/18</td> <td>Statistical Applications Of The Multivariate Skew Normal Distribution</td> <td>490</td> <td>(</td>                    | /18           | Statistical Applications Of The Multivariate Skew Normal Distribution     | 490      | (     |
| 19       Composite Quantile Regression And The Oracle Model Selection Theory       291         20       Bayes Factors       1553       5         20       Variable Selection Via Gibbs Sampling       781       781         20       The Bayesian Lasso       568       1         21       Inference And Missing Data       1905       7         21       Estimation Of Regression-Coefficients When Some Regressors Are Not Always       1034       2         22       Observed       480       3         23       Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse       480       3         241       Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse       480       3         242       Closed Testing Procedures With Adaptive Interim Analyses       277       7         252       Closed Testing Procedures With Adaptive Interim Analyses       277       7         24       Adaptive Sample Size Calculations In Group Sequential Trials       241       1         253       Approximate Inference In Generalized Linear Mixed Models       1345       4         263       Approximate Inference In Generalized Linear Mixed Models       1345       4         264       Covariance Regularization By Thresholding       399       2                                                                                                                                                                                      | $^{\prime}19$ | ÷ .                                                                       |          | 2     |
| 20       Bayes Factors       1553       5         20       Variable Selection Via Gibbs Sampling       781       781         20       The Bayesian Lasso       568       1         21       Inference And Missing Data       1905       9         21       Inference And Missing Data       1905       9         21       Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse<br>Models       480       3         22       Closed Testing Procedures With Special Reference To Ordered Analysis Of<br>Variance       557       9         22       Closed Testing Procedures With Adaptive Interim Analyses       277       9         23       Adaptive Sample Size Calculations In Group Sequential Trials       241       1         24       Flexible Smoothing With B-Splines And Penalties       1074       1         25       Monde-Effects Models For Longitudinal Data       1540       1         24       Covariance Regularization By Thresholding       399       2         25       Monte-Carlo Sampling Methods Using Markov Chains And Their Applications       1431         26       Generalized Paproaches To Calculating Marginal Densities       1695         27       Regularized Estimation Of Large Covariance Matrices       329       1         28 <td></td> <td></td> <td></td> <td>,</td>                                                                                                                                            |               |                                                                           |          | ,     |
| 20       Variable Selection Via Gibbs Sampling       781         20       The Bayesian Lasso       568       1         20       Inference And Missing Data       1905         21       Inference And Missing Data       1905         22       Extimation Of Regression-Coefficients When Some Regressors Are Not Always       1034       2         21       Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse       480       3         Models       22       Closed Testing Procedures With Special Reference To Ordered Analysis Of       557         22       Closed Testing Procedures With Adaptive Interim Analyses       277       27         23       Adaptive Sample Size Calculations In Group Sequential Trials       241       10         24       Adprive Sample Size Calculations In Group Sequential Trials       1074         25       Kachom-Effects Models For Longitudinal Data       1540       1         26       Ovariance Regularization By Thresholding       399       2         27       Regularized Estimation Of Large Covariance Matrices       392       1         28       Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model       1193       1         29       Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially       360                                                                                                                                             | 19            | Composite Quantile Regression And The Oracle Model Selection Theory       | 291      |       |
| 220The Bayesian Lasso5681221Inference And Missing Data1905221Estimation Of Regression-Coefficients When Some Regressors Are Not Always<br>Observed10342221Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse<br>Models4803222Closed Testing Procedures With Special Reference To Ordered Analysis Of<br>Variance557557222Evaluation Of Experiments With Adaptive Interim Analyses277557223Adaptive Sample Size Calculations In Group Sequential Trials24110224Random-Effects Models For Longitudinal Data15401234Random-Effects Models For Longitudinal Data15401244Covariance Regularization By Thresholding<br>Sampling-Based Approaches To Calculating Marginal Densities3992255Sampling-Based Approaches To Calculating Marginal Densities16955221256Generalized Partially Linear Single-Index Models32911266Generalized Partially Linear Single-Index Models32911276A Generalized Of Sampling Without Replacement From A Finite Universe11602276A Generalized Treatment Rules Using Outcome Weighted Learning2802277Estimation Of Sampling Without Replacement From A Finite Universe11602276A Generalized Treatment Rules Using Outcome Weighted Learning2802277A constrained For Incomplete Data2802278A Sta                                                                                                                                                                                                                                        | 20            | *                                                                         | 1553     | 5     |
| 21       Inference And Missing Data       1905         21       Estimation Of Regression-Coefficients When Some Regressors Are Not Always       1034       2         221       Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse       480       3         221       Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse       480       3         222       Closed Testing Procedures With Special Reference To Ordered Analysis Of       557       7         222       Evaluation Of Experiments With Adaptive Interim Analyses       277       7         223       Flexible Smoothing With B-Splines And Penalties       1074       14         233       Flexible Smoothing With B-Splines And Penalties       1074       145         243       Random-Effects Models For Longitudinal Data       1540       1         244       On The Distribution Of The Largest Eigenvalue In Principal Components       486         Analysis       399       2       1         244       Covariance Regularization By Thresholding       399       2         245       Monte-Carlo Sampling Methods Using Markov Chains And Their Applications       1431         245       Sampling-Based Approaches To Calculating Marginal Densities       1695         256       Reversible Jump Markov Chain Monte Carlo Computatio                                                                                                                         |               |                                                                           |          | ł     |
| 221       Estimation Of Regression-Coefficients When Some Regressors Are Not Always<br>Observed       1034       2         221       Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse<br>Models       480       3         222       Closed Testing Procedures With Special Reference To Ordered Analysis Of<br>Variance       557       57         222       Evaluation Of Experiments With Adaptive Interim Analyses       277       57         223       Adaptive Sample Size Calculations In Group Sequential Trials       241       10         223       Flexible Smoothing With B-Splines And Penaltics       1074       57         224       Adptive Sample Size Calculations In Group Sequential Trials       241       10         225       Rendom-Effects Models For Longitudinal Data       1540       1         226       Covariance Regularization By Thresholding       399       2         227       Monte-Carlo Sampling Methods Using Markov Chains And Their Applications       1431         225       Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model       1193         226       Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially       360       2         226       Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially       360       2       1         226                                                                                       | /20           | The Bayesian Lasso                                                        | 568      | 1     |
| Observed       480       3         Models       3         Wodels       557       557         Closed Testing Procedures With Special Reference To Ordered Analysis Of       557         Variance       22       Evaluation Of Experiments With Adaptive Interim Analyses       277         22       Evaluation Of Experiments With Adaptive Interim Analyses       277       57         22       Evaluation Of Experiments With Adaptive Interim Analyses       277       57         22       Adaptive Sample Size Calculations In Group Sequential Trials       241       11         23       Flexible Smoothing With B-Splines And Penalties       1074       57         24       Approximate Inference In Generalized Linear Mixed Models       1345       4         24       Random-Effects Models For Longitudinal Data       1540       1         24       On The Distribution Of The Largest Eigenvalue In Principal Components       486         Analysis       399       2       1         24       Covariance Regularization By Thresholding       399       2         25       Monte-Carlo Sampling Methods Using Markov Chains And Their Applications       1431       1431         25       Sampling-Based Approaches To Calculating Marginal Densities       1695       1695                                                                                                                                                                                    | $^{\prime}21$ |                                                                           | 1905     | 1     |
| Models       22       Closed Testing Procedures With Special Reference To Ordered Analysis Of<br>Variance       557         222       Closed Testing Procedures With Adaptive Interim Analyses       277         224       Adaptive Sample Size Calculations In Group Sequential Trials       241         225       Adaptive Sample Size Calculations In Group Sequential Trials       241         226       Plexible Smoothing With B-Splines And Penalties       1074         23       Flexible Smoothing With B-Splines And Penalties       1074         24       Approximate Inference In Generalized Linear Mixed Models       1345         25       Random-Effects Models For Longitudinal Data       1540         264       Covariance Regularization By Thresholding       399       2         272       Regularized Estimation Of Large Covariance Matrices       392       1         273       Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model       1193       1         274       Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model       1193       1         274       Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially<br>Linear Models       522       1         275       Penalized Spline Estimation For Partially Linear Single-Index Models       329       1         276 <t< td=""><td>/21</td><td></td><td>1034</td><td>2</td></t<>                                         | /21           |                                                                           | 1034     | 2     |
| VarianceVariance22Evaluation Of Experiments With Adaptive Interim Analyses27722Adaptive Sample Size Calculations In Group Sequential Trials24123Flexible Smoothing With B-Splines And Penalties107424Approximate Inference In Generalized Linear Mixed Models134524Random-Effects Models For Longitudinal Data154024Random-Effects Models For Longitudinal Data154024Covariance Regularization By Thresholding39922Regularized Estimation Of Large Covariance Matrices39224Regularized Estimation Of Large Covariance Matrices39225Monte-Carlo Sampling Methods Using Markov Chains And Their Applications143126Sampling-Based Approaches To Calculating Marginal Densities169527Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model119326Generalized Partially Linear Single-Index Models52227Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially36028Penalized Spline Estimation For Partially Linear Single-Index Models32929Pomystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data28029A Robust Method For Estimating Optimal Treatment Regimes21020Performance Guarantees For Individualized Treatment Rules219                                                                                                                                                                                                                                  | /21           |                                                                           | 480      | 3     |
| 222Adaptive Sample Size Calculations In Group Sequential Trials2411233Flexible Smoothing With B-Splines And Penalties1074243Approximate Inference In Generalized Linear Mixed Models1345244Random-Effects Models For Longitudinal Data1540245Random-Effects Models For Longitudinal Data1540246On The Distribution Of The Largest Eigenvalue In Principal Components486247Analysis399248Covariance Regularization By Thresholding399249Regularized Estimation Of Large Covariance Matrices392250Monte-Carlo Sampling Methods Using Markov Chains And Their Applications1431251Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model1193262Generalized Partially Linear Single-Index Models52211273Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially36022274Penalized Spline Estimation For Partially Linear Single-Index Models3291275A Generalization Of Regression-Coefficients When Some Regressors Are Not Always10342276Observed1601042277A Generalization Of Sampling Without Replacement From A Finite Universe11602278Estimating A Population Mean From Incomplete Data28022278A Robust Method For Estimating Optimal Treatment Regimes2101278Performance Guarantees For Individualized Treatment Rules219219                                                                                                                                                                                                          | /22           | · ·                                                                       | 557      |       |
| 923Flexible Smoothing With B-Splines And Penalties1074923Flexible Smoothing With B-Splines And Penalties1074924Approximate Inference In Generalized Linear Mixed Models1345924Random-Effects Models For Longitudinal Data1540924On The Distribution Of The Largest Eigenvalue In Principal Components486924Analysis399924Regularized Estimation Of Large Covariance Matrices392925Monte-Carlo Sampling Methods Using Markov Chains And Their Applications1431925Sampling-Based Approaches To Calculating Marginal Densities1695926Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model1193926Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially360927Penalized Spline Estimation For Partially Linear Single-Index Models329928Pemalized Spline Estimation of Sampling Without Replacement From A Finite Universe1160927A Generalization Of Sampling Without Replacement From A Finite Universe1160928Estimating A Population Mean From Incomplete Data2802928A Robust Method For Estimating Optimal Treatment Regimes2101928Performance Guarantees For Individualized Treatment Rules2192                                                                                                                                                                                                                                                                                                                                     | y22           | Evaluation Of Experiments With Adaptive Interim Analyses                  | 277      |       |
| Approximate Inference In Generalized Linear Mixed Models13454Random-Effects Models For Longitudinal Data15401On The Distribution Of The Largest Eigenvalue In Principal Components486Analysis3992Covariance Regularization By Thresholding399Regularized Estimation Of Large Covariance Matrices392Monte-Carlo Sampling Methods Using Markov Chains And Their Applications1431Sampling-Based Approaches To Calculating Marginal Densities1695Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model1193Determination22Generalized Partially Linear Single-Index Models522Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially300Linear Models329Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially304Cobserved329A Generalized Spline Estimation For Partially Linear Single-Index Models329Partialty Observed1160A Generalization Of Regression-Coefficients When Some Regressors Are Not Always1034Partialty A Population Mean From Incomplete Data280Partialty Individualized Treatment Rules Using Outcome Weighted Learning280Partialty Method For Estimating Optimal Treatment Regimes210Partorial A Robust Method For Estimating Optimal Treatment Rules219Partorial A Robust Method For Estimating Optimal Treatment Rules219                                                                                                                                                                   | /22           | Adaptive Sample Size Calculations In Group Sequential Trials              | 241      | 1     |
| 723Random-Effects Models For Longitudinal Data15401724On The Distribution Of The Largest Eigenvalue In Principal Components<br>Analysis486724Covariance Regularization By Thresholding3992724Regularized Estimation Of Large Covariance Matrices3921725Monte-Carlo Sampling Methods Using Markov Chains And Their Applications1431725Sampling-Based Approaches To Calculating Marginal Densities1695726Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model1193727Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model360728Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially360729Penalized Spline Estimation For Partially Linear Single-Index Models329720Estimation Of Regression-Coefficients When Some Regressors Are Not Always<br>Observed1034727A Generalization Of Sampling Without Replacement From A Finite Universe<br>Estimating A Population Mean From Incomplete Data1160728Estimating Individualized Treatment Rules Using Outcome Weighted Learning<br>Performance Guarantees For Individualized Treatment Rules2101728Performance Guarantees For Individualized Treatment Rules2101729Performance Guarantees For Individualized Treatment Rules2101                                                                                                                                                                                                                                     | $^{23}$       | Flexible Smoothing With B-Splines And Penalties                           | 1074     |       |
| 724       On The Distribution Of The Largest Eigenvalue In Principal Components       486         Analysis       399       2         724       Covariance Regularization By Thresholding       399       2         724       Regularized Estimation Of Large Covariance Matrices       392       1         725       Monte-Carlo Sampling Methods Using Markov Chains And Their Applications       1431         725       Sampling-Based Approaches To Calculating Marginal Densities       1695         725       Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model       1193         726       Generalized Partially Linear Single-Index Models       522       1         726       Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially       360       2         726       Penalized Spline Estimation For Partially Linear Single-Index Models       329       1         727       Estimation Of Regression-Coefficients When Some Regressors Are Not Always       1034       2         727       A Generalization Of Sampling Without Replacement From A Finite Universe       1160       7         728       Estimating A Population Mean From Incomplete Data       2       2         727       Reneralization Of Sampling Without Replacement From A Finite Universe       1160       7         728                                                                                                                 | $^{23}$       |                                                                           | 1345     | 4     |
| Analysis399724Covariance Regularization By Thresholding399724Regularized Estimation Of Large Covariance Matrices392725Monte-Carlo Sampling Methods Using Markov Chains And Their Applications1431725Sampling-Based Approaches To Calculating Marginal Densities1695725Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model1193726Generalized Partially Linear Single-Index Models522727Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially360726Penalized Spline Estimation For Partially Linear Single-Index Models329727Estimation Of Regression-Coefficients When Some Regressors Are Not Always1034728Cobserved416729Comparising A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data280728Estimating Individualized Treatment Rules Using Outcome Weighted Learning<br>210280729Performance Guarantees For Individualized Treatment Rules219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /23           | Random-Effects Models For Longitudinal Data                               | 1540     | 1     |
| 724Covariance Regularization By Thresholding39922724Regularized Estimation Of Large Covariance Matrices3921725Monte-Carlo Sampling Methods Using Markov Chains And Their Applications1431725Sampling-Based Approaches To Calculating Marginal Densities1695725Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model1193726Generalized Partially Linear Single-Index Models522727Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially360726Penalized Spline Estimation For Partially Linear Single-Index Models329727Estimation Of Regression-Coefficients When Some Regressors Are Not Always1034728Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data280728A Robust Method For Estimating Optimal Treatment Regimes210728Performance Guarantees For Individualized Treatment Rules219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /24           |                                                                           | 486      |       |
| 725Monte-Carlo Sampling Methods Using Markov Chains And Their Applications1431725Sampling-Based Approaches To Calculating Marginal Densities1695725Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model1193726Generalized Partially Linear Single-Index Models522727Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially360726Penalized Spline Estimation For Partially Linear Single-Index Models329727Estimation Of Regression-Coefficients When Some Regressors Are Not Always1034728Comparison Of Sampling Without Replacement From A Finite Universe1160729Penalization Of Sampling Without Replacement From A Finite Universe1160729Penystifying Double Robustness: A Comparison Of Alternative Strategies For416729Estimating Individualized Treatment Rules Using Outcome Weighted Learning280729Performance Guarantees For Individualized Treatment Rules219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sqrt{24}$   | Covariance Regularization By Thresholding                                 | 399      | 2     |
| Y25       Sampling-Based Approaches To Calculating Marginal Densities       1695         Y25       Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model       1193       1         Determination       1193       1         Y26       Generalized Partially Linear Single-Index Models       522       1:         Y26       Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially       360       2         Linear Models       1193       1       1         Y26       Penalized Spline Estimation For Partially Linear Single-Index Models       329       1         Y27       Estimation Of Regression-Coefficients When Some Regressors Are Not Always       1034       2         Y27       A Generalization Of Sampling Without Replacement From A Finite Universe       1160       1160         Y27       A Generalization Of Sampling Without Replacement From A Finite Universe       1160       1160         Y27       A Generalization Mean From Incomplete Data       216       217         Y28       Estimating Individualized Treatment Rules Using Outcome Weighted Learning       280       210         Y28       A Robust Method For Estimating Optimal Treatment Regimes       210       117         Y28       Performance Guarantees For Individualized Treatment Rules       219       219 <td><math>\sqrt{24}</math></td> <td>Regularized Estimation Of Large Covariance Matrices</td> <td>392</td> <td>1</td> | $\sqrt{24}$   | Regularized Estimation Of Large Covariance Matrices                       | 392      | 1     |
| 725Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model11931726Generalized Partially Linear Single-Index Models5221726Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially3602726Pendiles3291727Estimation Of Regression-Coefficients When Some Regressors Are Not Always10342727Observed011601160727A Generalization Of Sampling Without Replacement From A Finite Universe11601160727Demystifying Double Robustness: A Comparison Of Alternative Strategies For4162728Estimating Individualized Treatment Rules Using Outcome Weighted Learning28022728A Robust Method For Estimating Optimal Treatment Regimes21014729Performance Guarantees For Individualized Treatment Rules219219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /25           | Monte-Carlo Sampling Methods Using Markov Chains And Their Applications   | 1431     |       |
| Determination726Generalized Partially Linear Single-Index Models5221726Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially3602111Linear Models3291727Penalized Spline Estimation For Partially Linear Single-Index Models3291727Estimation Of Regression-Coefficients When Some Regressors Are Not Always10342727A Generalization Of Sampling Without Replacement From A Finite Universe1160727Demystifying Double Robustness: A Comparison Of Alternative Strategies For4162728Estimating Individualized Treatment Rules Using Outcome Weighted Learning2802728Performance Guarantees For Individualized Treatment Regimes2101728Performance Guarantees For Individualized Treatment Rules2192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25            | Sampling-Based Approaches To Calculating Marginal Densities               | 1695     |       |
| 726Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially<br>Linear Models3602726Penalized Spline Estimation For Partially Linear Single-Index Models3291727Estimation Of Regression-Coefficients When Some Regressors Are Not Always<br>Observed10342727A Generalization Of Sampling Without Replacement From A Finite Universe<br>Estimating A Population Mean From Incomplete Data1160728Estimating Individualized Treatment Rules Using Outcome Weighted Learning<br>Performance Guarantees For Individualized Treatment Rules210728Performance Guarantees For Individualized Treatment Rules219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /25           |                                                                           | 1193     | 1     |
| 726Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially<br>Linear Models3602726Penalized Spline Estimation For Partially Linear Single-Index Models3291727Estimation Of Regression-Coefficients When Some Regressors Are Not Always<br>Observed10342727A Generalization Of Sampling Without Replacement From A Finite Universe<br>Estimating Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data4162728Estimating Individualized Treatment Rules Using Outcome Weighted Learning<br>Performance Guarantees For Individualized Treatment Rules2101728Performance Guarantees For Individualized Treatment Rules2192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /26           | Generalized Partially Linear Single-Index Models                          | 522      | 1     |
| Linear Models329726Penalized Spline Estimation For Partially Linear Single-Index Models329727Estimation Of Regression-Coefficients When Some Regressors Are Not Always<br>Observed1034727A Generalization Of Sampling Without Replacement From A Finite Universe1160727A Generalization Of Sampling Without Replacement From A Finite Universe1160727Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data416728Estimating Individualized Treatment Rules Using Outcome Weighted Learning<br>Performance Guarantees For Individualized Treatment Regimes210728Performance Guarantees For Individualized Treatment Rules219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                           |          |       |
| 7/27       Estimation Of Regression-Coefficients When Some Regressors Are Not Always       1034       2         7/27       Estimation Of Sampling Without Replacement From A Finite Universe       1160         7/27       A Generalization Of Sampling Without Replacement From A Finite Universe       1160         7/27       Demystifying Double Robustness: A Comparison Of Alternative Strategies For       416         7/28       Estimating Individualized Treatment Rules Using Outcome Weighted Learning       280       2         7/28       A Robust Method For Estimating Optimal Treatment Regimes       210       1         7/28       Performance Guarantees For Individualized Treatment Rules       219       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | · · · · · ·                                                               |          |       |
| Observed1160727A Generalization Of Sampling Without Replacement From A Finite Universe1160727Demystifying Double Robustness: A Comparison Of Alternative Strategies For416728Estimating A Population Mean From Incomplete Data280728Estimating Individualized Treatment Rules Using Outcome Weighted Learning280728A Robust Method For Estimating Optimal Treatment Regimes210728Performance Guarantees For Individualized Treatment Rules219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26            | Penalized Spline Estimation For Partially Linear Single-Index Models      | 329      | 1     |
| 727Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data4162728Estimating Individualized Treatment Rules Using Outcome Weighted Learning<br>A Robust Method For Estimating Optimal Treatment Regimes28024728Performance Guarantees For Individualized Treatment Rules21014729Performance Guarantees For Individualized Treatment Rules21924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /27           | 5 °                                                                       | 1034     | 2     |
| Estimating A Population Mean From Incomplete Data728Estimating Individualized Treatment Rules Using Outcome Weighted Learning28024728A Robust Method For Estimating Optimal Treatment Regimes21014728Performance Guarantees For Individualized Treatment Rules21924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27            |                                                                           | 1160     |       |
| y28A Robust Method For Estimating Optimal Treatment Regimes2101y28Performance Guarantees For Individualized Treatment Rules2192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y27           |                                                                           | 416      | 2     |
| y28A Robust Method For Estimating Optimal Treatment Regimes2101y28Performance Guarantees For Individualized Treatment Rules2192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y28           | Estimating Individualized Treatment Rules Using Outcome Weighted Learning | 280      | 2     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /28           | A Robust Method For Estimating Optimal Treatment Regimes                  | 210      | 1     |
| 29Ridge Regression - Biased Estimation For Nonorthogonal Problems1402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $^{\prime}28$ | Performance Guarantees For Individualized Treatment Rules                 | 219      | 2     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $^{\prime}29$ | Ridge Regression - Biased Estimation For Nonorthogonal Problems           | 1402     | ,     |

Table 33: Y (incoming citation) factor hubs - k = 30,  $\ell_z$  = 25000,  $\ell_y$  = 25000 (continued)

Table 33: Y (incoming citation) factor hubs - k = 30,  $\ell_z$  = 25000,  $\ell_y$  = 25000 (continued)

| ID  | Title                                                                                 | Cited by | Cites |
|-----|---------------------------------------------------------------------------------------|----------|-------|
| y29 | Regularization And Variable Selection Via The Elastic Net                             | 1584     | 11    |
| y29 | Performance Of Some New Ridge Regression Estimators                                   | 233      | 11    |
| y30 | Estimation In A Cox Proportional Hazards Cure Model                                   | 279      | 10    |
| y30 | Survival Curve For Cancer Patients Following Treatment                                | 319      | 3     |
| y30 | A Mixture Model Combining Logistic-Regression With Proportional Hazards<br>Regression | 258      | 5     |

# Table 34: Y (incoming citation) factor hubs - k = 30, $\ell_z$ = 50000, $\ell_y$ = 50000

| ID  | Title                                                                                                                           | Cited by | Cites |
|-----|---------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| y01 | Variable Selection Via Nonconcave Penalized Likelihood And Its Oracle<br>Properties                                             | 2804     | 14    |
| y01 | The Adaptive Lasso And Its Oracle Properties                                                                                    | 2052     | 14    |
| y01 | Nearly Unbiased Variable Selection Under Minimax Concave Penalty                                                                | 987      | 36    |
| y02 | Sure Independence Screening For Ultrahigh Dimensional Feature Space                                                             | 905      | 33    |
| y02 | Feature Screening Via Distance Correlation Learning                                                                             | 327      | 22    |
| y02 | Sure Independence Screening In Generalized Linear Models With<br>Np-Dimensionality                                              | 305      | 24    |
| y03 | Bayesian Measures Of Model Complexity And Fit                                                                                   | 2107     | 38    |
| y03 | Prior Distributions For Variance Parameters In Hierarchical Models(Comment<br>On An Article By Browne And Draper)               | 906      | 28    |
| y03 | Bayesian Image-Restoration, With 2 Applications In Spatial Statistics                                                           | 797      | 3     |
| y04 | On Asymptotically Optimal Confidence Regions And Tests For<br>High-Dimensional Models                                           | 360      | 36    |
| y04 | Confidence Intervals For Low Dimensional Parameters In High Dimensional Linear Models                                           | 350      | 33    |
| y04 | Simultaneous Analysis Of Lasso And Dantzig Selector                                                                             | 617      | 16    |
| y05 | Regression Models And Life-Tables                                                                                               | 4087     | 21    |
| y05 | Cox Regression-Model For Counting-Processes - A Large Sample Study                                                              | 1218     | 13    |
| y05 | Nonparametric-Estimation From Incomplete Observations                                                                           | 1853     | 11    |
| y06 | Estimating Dimension Of A Model                                                                                                 | 3727     | 3     |
| y06 | Model-Based Clustering, Discriminant Analysis, And Density Estimation                                                           | 594      | 43    |
| y06 | Some Comments On Cp                                                                                                             | 770      | 18    |
| y07 | The Central Role Of The Propensity Score In Observational Studies For Causal Effects                                            | 1497     | 11    |
| y07 | Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study         | 334      | 8     |
| y07 | Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data | 416      | 28    |
| y08 | Controlling The False Discovery Rate - A Practical And Powerful Approach To<br>Multiple Testing                                 | 2025     | g     |
| y08 | The Control Of The False Discovery Rate In Multiple Testing Under Dependency                                                    | 644      | 21    |
| y08 | A Direct Approach To False Discovery Rates                                                                                      | 555      | 5     |
| y09 | Sparse Inverse Covariance Estimation With The Graphical Lasso                                                                   | 754      | 2     |
| y09 | High-Dimensional Graphs And Variable Selection With The Lasso                                                                   | 885      | 12    |
| y09 | Model Selection And Estimation In The Gaussian Graphical Model                                                                  | 477      | 8     |
| y10 | Bayesian Analysis Of Some Nonparametric Problems                                                                                | 1373     | 4     |
| y10 | A Constructive Definition Of Dirichlet Priors                                                                                   | 711      | 6     |
| y10 | Bayesian Density-Estimation And Inference Using Mixtures                                                                        | 724      | 12    |
| y11 | Sliced Inverse Regression For Dimension Reduction                                                                               | 930      | 29    |
| y11 | Sliced Inverse Regression For Dimension Reduction - Comment                                                                     | 488      | 4     |

| ID            | Title                                                                                                                                | Cited by | Cites |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| y11           | An Adaptive Estimation Of Dimension Reduction Space                                                                                  | 472      | 25    |
| y12           | Regularization Paths For Generalized Linear Models Via Coordinate Descent                                                            | 1124     | 15    |
| y12           | Regularization And Variable Selection Via The Elastic Net                                                                            | 1584     | 1     |
| y12           | Least Angle Regression                                                                                                               | 1259     | 10    |
| /13           | Regression Shrinkage And Selection Via The Lasso                                                                                     | 4759     | ;     |
| $^{\prime}13$ | Regularization And Variable Selection Via The Elastic Net                                                                            | 1584     | 1     |
| /13           | Least Angle Regression                                                                                                               | 1259     | 1     |
| /14           | An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach | 512      | 5     |
| /14           | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                       | 812      | 10    |
| /14           | Stationary Process Approximation For The Analysis Of Large Spatial Datasets                                                          | 380      | 1     |
| v15           | Empirical Likelihood Ratio Confidence-Intervals For A Single Functional                                                              | 1115     |       |
| $^{-15}$      | Empirical Likelihood Ratio Confidence-Regions                                                                                        | 913      | 1     |
| v15           | Empirical Likelihood And General Estimating Equations                                                                                | 877      | 1     |
| 16            | Longitudinal Data-Analysis Using Generalized Linear-Models                                                                           | 2624     | 1     |
| 16            | Improving Generalised Estimating Equations Using Quadratic Inference<br>Functions                                                    | 235      | 1     |
| 16            | Longitudinal Data-Analysis For Discrete And Continuous Outcomes                                                                      | 516      | 1     |
| v17           | Functional Data Analysis For Sparse Longitudinal Data                                                                                | 640      | 2     |
| 17            | Functional Linear Regression Analysis For Longitudinal Data                                                                          | 342      | 1     |
| $\cdot 17$    | Methodology And Convergence Rates For Functional Linear Regression                                                                   | 295      | 1     |
| 18            | A Class Of Distributions Which Includes The Normal Ones                                                                              | 886      |       |
| 18            | The Multivariate Skew-Normal Distribution                                                                                            | 632      |       |
| 18            | Statistical Applications Of The Multivariate Skew Normal Distribution                                                                | 490      |       |
| 19            | Regression Quantiles                                                                                                                 | 1603     | 2     |
| 19            | Bayesian Quantile Regression                                                                                                         | 286      |       |
| 19            | Composite Quantile Regression And The Oracle Model Selection Theory                                                                  | 291      |       |
| 20            | Bayes Factors                                                                                                                        | 1553     | 5     |
| 20            | Variable Selection Via Gibbs Sampling                                                                                                | 781      |       |
| 20            | The Bayesian Lasso                                                                                                                   | 568      | 1     |
| 21            | Inference And Missing Data                                                                                                           | 1905     |       |
| 21            | Estimation Of Regression-Coefficients When Some Regressors Are Not Always Observed                                                   | 1034     | 2     |
| 21            | Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse<br>Models                                                       | 480      | 3     |
| 22            | Closed Testing Procedures With Special Reference To Ordered Analysis Of Variance                                                     | 557      |       |
| $\sqrt{22}$   | Evaluation Of Experiments With Adaptive Interim Analyses                                                                             | 277      |       |
| 22            | Adaptive Sample Size Calculations In Group Sequential Trials                                                                         | 241      | 1     |
| 23            | Flexible Smoothing With B-Splines And Penalties                                                                                      | 1074     |       |
| 23            | Approximate Inference In Generalized Linear Mixed Models                                                                             | 1345     | 4     |
| 23            | Random-Effects Models For Longitudinal Data                                                                                          | 1540     | 1     |
| 24            | On The Distribution Of The Largest Eigenvalue In Principal Components<br>Analysis                                                    | 486      |       |
| 24            | Covariance Regularization By Thresholding                                                                                            | 399      | 2     |
| $\cdot 24$    | Regularized Estimation Of Large Covariance Matrices                                                                                  | 392      | 1     |
| 25            | Monte-Carlo Sampling Methods Using Markov Chains And Their Applications                                                              | 1431     |       |
| 25            | Sampling-Based Approaches To Calculating Marginal Densities                                                                          | 1695     |       |
| 25            | Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model Determination                                                | 1193     | 1     |
| 26            | Generalized Partially Linear Single-Index Models                                                                                     | 522      | 1     |
|               |                                                                                                                                      | 522      | 1     |

Table 34: Y (incoming citation) factor hubs - k = 30,  $\ell_z$  = 50000,  $\ell_y$  = 50000 (continued)

Table 34: Y (incoming citation) factor hubs - k = 30,  $\ell_z$  = 50000,  $\ell_y$  = 50000 (continued)

| ID  | Title                                                                                                                           | Cited by | Cites |
|-----|---------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| y26 | Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially<br>Linear Models                                  | 360      | 24    |
| y26 | Penalized Spline Estimation For Partially Linear Single-Index Models                                                            | 329      | 17    |
| y27 | Estimation Of Regression-Coefficients When Some Regressors Are Not Always<br>Observed                                           | 1034     | 21    |
| y27 | A Generalization Of Sampling Without Replacement From A Finite Universe                                                         | 1160     | 5     |
| y27 | Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data | 416      | 28    |
| y28 | Estimating Individualized Treatment Rules Using Outcome Weighted Learning                                                       | 280      | 20    |
| y28 | A Robust Method For Estimating Optimal Treatment Regimes                                                                        | 210      | 16    |
| y28 | Performance Guarantees For Individualized Treatment Rules                                                                       | 219      | 22    |
| y29 | Ridge Regression - Biased Estimation For Nonorthogonal Problems                                                                 | 1402     | 7     |
| y29 | Regularization And Variable Selection Via The Elastic Net                                                                       | 1584     | 11    |
| y29 | Performance Of Some New Ridge Regression Estimators                                                                             | 233      | 11    |
| y30 | Estimation In A Cox Proportional Hazards Cure Model                                                                             | 279      | 10    |
| y30 | Survival Curve For Cancer Patients Following Treatment                                                                          | 319      | 3     |
| y30 | A Mixture Model Combining Logistic-Regression With Proportional Hazards Regression                                              | 258      | 5     |

### Table 35: Y (incoming citation) factor hubs - k = 30, $\ell_z$ = 70000, $\ell_y$ = 70000

| ID  | Title                                                                                                                           | Cited by | Cites |
|-----|---------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| y01 | Variable Selection Via Nonconcave Penalized Likelihood And Its Oracle<br>Properties                                             | 2804     | 14    |
| y01 | The Adaptive Lasso And Its Oracle Properties                                                                                    | 2052     | 14    |
| y01 | Nearly Unbiased Variable Selection Under Minimax Concave Penalty                                                                | 987      | 36    |
| y02 | Sure Independence Screening For Ultrahigh Dimensional Feature Space                                                             | 905      | 33    |
| y02 | Feature Screening Via Distance Correlation Learning                                                                             | 327      | 22    |
| y02 | Sure Independence Screening In Generalized Linear Models With<br>Np-Dimensionality                                              | 305      | 24    |
| y03 | Bayesian Measures Of Model Complexity And Fit                                                                                   | 2107     | 38    |
| y03 | Prior Distributions For Variance Parameters In Hierarchical Models(Comment<br>On An Article By Browne And Draper)               | 906      | 28    |
| y03 | Bayesian Image-Restoration, With 2 Applications In Spatial Statistics                                                           | 797      | 3     |
| y04 | On Asymptotically Optimal Confidence Regions And Tests For<br>High-Dimensional Models                                           | 360      | 36    |
| y04 | Confidence Intervals For Low Dimensional Parameters In High Dimensional<br>Linear Models                                        | 350      | 33    |
| y04 | Simultaneous Analysis Of Lasso And Dantzig Selector                                                                             | 617      | 16    |
| y05 | Regression Models And Life-Tables                                                                                               | 4087     | 21    |
| y05 | Cox Regression-Model For Counting-Processes - A Large Sample Study                                                              | 1218     | 13    |
| y05 | Nonparametric-Estimation From Incomplete Observations                                                                           | 1853     | 11    |
| y06 | Estimating Dimension Of A Model                                                                                                 | 3727     | 3     |
| y06 | Model-Based Clustering, Discriminant Analysis, And Density Estimation                                                           | 594      | 43    |
| y06 | Some Comments On Cp                                                                                                             | 770      | 18    |
| y07 | The Central Role Of The Propensity Score In Observational Studies For Causal Effects                                            | 1497     | 11    |
| y07 | Stratification And Weighting Via The Propensity Score In Estimation Of Causal<br>Treatment Effects: A Comparative Study         | 334      | 8     |
| y07 | Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data | 416      | 28    |

Table 35: Y (incoming citation) factor hubs - k = 30,  $\ell_z$  = 70000,  $\ell_y$  = 70000 (continued)

| ID         | Title                                                                                                                                | Cited by      | Cites                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|
| y08        | Controlling The False Discovery Rate - A Practical And Powerful Approach To Multiple Testing                                         | 2025          | 9                                      |
| y08<br>y08 | The Control Of The False Discovery Rate In Multiple Testing Under Dependency<br>A Direct Approach To False Discovery Rates           | $644 \\ 555$  | $21 \\ 5$                              |
| y09        | Sparse Inverse Covariance Estimation With The Graphical Lasso                                                                        | 754           | 2                                      |
| y09        | High-Dimensional Graphs And Variable Selection With The Lasso                                                                        | 885           | 12                                     |
| y09        | Model Selection And Estimation In The Gaussian Graphical Model                                                                       | 477           | 8                                      |
| y10        | Bayesian Analysis Of Some Nonparametric Problems                                                                                     | 1373          | 4                                      |
| y10<br>y10 | A Constructive Definition Of Dirichlet Priors<br>Bayesian Density-Estimation And Inference Using Mixtures                            | $711 \\ 724$  | 6<br>12                                |
|            |                                                                                                                                      |               |                                        |
| y11<br>y11 | Sliced Inverse Regression For Dimension Reduction<br>Sliced Inverse Regression For Dimension Reduction - Comment                     | $930 \\ 488$  | $\frac{29}{4}$                         |
| y11        | An Adaptive Estimation Of Dimension Reduction Space                                                                                  | 472           | 25                                     |
| y12        | Regularization Paths For Generalized Linear Models Via Coordinate Descent                                                            | 1124          | 15                                     |
| y12        | Regularization And Variable Selection Via The Elastic Net                                                                            | 1584          | 11                                     |
| y12        | Least Angle Regression                                                                                                               | 1259          | 10                                     |
| y13        | Regression Shrinkage And Selection Via The Lasso                                                                                     | 4759          | 8                                      |
| y13        | Regularization And Variable Selection Via The Elastic Net                                                                            | 1584          | 11                                     |
| y13        | Least Angle Regression                                                                                                               | 1259          | 10                                     |
| y14        | An Explicit Link Between Gaussian Fields And Gaussian Markov Random Fields:<br>The Stochastic Partial Differential Equation Approach | 512           | 55                                     |
| y14        | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                       | 812           | 109                                    |
| y14        | Stationary Process Approximation For The Analysis Of Large Spatial Datasets                                                          | 380           | 18                                     |
| y15        | Empirical Likelihood Ratio Confidence-Intervals For A Single Functional                                                              | 1115          | 6                                      |
| y15<br>y15 | Empirical Likelihood Ratio Confidence-Regions<br>Empirical Likelihood And General Estimating Equations                               | 913<br>877    | $\frac{14}{17}$                        |
| y16        | Longitudinal Data-Analysis Using Generalized Linear-Models                                                                           | 2624          | 11                                     |
| y16        | Improving Generalised Estimating Equations Using Quadratic Inference<br>Functions                                                    | 235           | 13                                     |
| y16        | Longitudinal Data-Analysis For Discrete And Continuous Outcomes                                                                      | 516           | 16                                     |
| y17        | Functional Data Analysis For Sparse Longitudinal Data                                                                                | 640           | 24                                     |
| y17<br>y17 | Functional Linear Regression Analysis For Longitudinal Data<br>Methodology And Convergence Rates For Functional Linear Regression    | $342 \\ 295$  | $\begin{array}{c} 19\\ 12 \end{array}$ |
| y18        | A Class Of Distributions Which Includes The Normal Ones                                                                              | 886           | 5                                      |
| y18        | The Multivariate Skew-Normal Distribution                                                                                            | 632           | 8                                      |
| y18        | Statistical Applications Of The Multivariate Skew Normal Distribution                                                                | 490           | 6                                      |
| y19        | Regression Quantiles                                                                                                                 | 1603          | 21                                     |
| y19<br>y19 | Bayesian Quantile Regression<br>Composite Quantile Regression And The Oracle Model Selection Theory                                  | $286 \\ 291$  | $7 \\ 6$                               |
|            |                                                                                                                                      |               |                                        |
| y20<br>y20 | Bayes Factors<br>Variable Selection Via Gibbs Sampling                                                                               | $1553 \\ 781$ | $\frac{56}{8}$                         |
| y20<br>y20 | The Bayesian Lasso                                                                                                                   | 568           | 11                                     |
| y21        | Inference And Missing Data                                                                                                           | 1905          | 9                                      |
| y21        | Estimation Of Regression-Coefficients When Some Regressors Are Not Always<br>Observed                                                | 1034          | 21                                     |
| y21        | Adjusting For Nonignorable Drop-Out Using Semiparametric Nonresponse<br>Models                                                       | 480           | 35                                     |
| y22        | Closed Testing Procedures With Special Reference To Ordered Analysis Of Variance                                                     | 557           | 6                                      |
| 22         | Evaluation Of Experiments With Adaptive Interim Analyses                                                                             | 277           | 7                                      |
| y22        | Adaptive Sample Size Calculations In Group Sequential Trials                                                                         |               | 16                                     |

| ID  | Title                                                                                                                           | Cited by | Cites |
|-----|---------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| y23 | Flexible Smoothing With B-Splines And Penalties                                                                                 | 1074     | 7     |
| y23 | Approximate Inference In Generalized Linear Mixed Models                                                                        | 1345     | 41    |
| y23 | Random-Effects Models For Longitudinal Data                                                                                     | 1540     | 1     |
| y24 | On The Distribution Of The Largest Eigenvalue In Principal Components<br>Analysis                                               | 486      | ,     |
| y24 | Covariance Regularization By Thresholding                                                                                       | 399      | 2     |
| y24 | Regularized Estimation Of Large Covariance Matrices                                                                             | 392      | 1     |
| y25 | Monte-Carlo Sampling Methods Using Markov Chains And Their Applications                                                         | 1431     |       |
| y25 | Sampling-Based Approaches To Calculating Marginal Densities                                                                     | 1695     | 1     |
| y25 | Reversible Jump Markov Chain Monte Carlo Computation And Bayesian Model Determination                                           | 1193     | 1     |
| y26 | Generalized Partially Linear Single-Index Models                                                                                | 522      | 1     |
| y26 | Profile Likelihood Inferences On Semiparametric Varying-Coefficient Partially<br>Linear Models                                  | 360      | 2     |
| y26 | Penalized Spline Estimation For Partially Linear Single-Index Models                                                            | 329      | 1     |
| y27 | Estimation Of Regression-Coefficients When Some Regressors Are Not Always Observed                                              | 1034     | 2     |
| y27 | A Generalization Of Sampling Without Replacement From A Finite Universe                                                         | 1160     |       |
| y27 | Demystifying Double Robustness: A Comparison Of Alternative Strategies For<br>Estimating A Population Mean From Incomplete Data | 416      | 2     |
| y28 | Estimating Individualized Treatment Rules Using Outcome Weighted Learning                                                       | 280      | 2     |
| y28 | A Robust Method For Estimating Optimal Treatment Regimes                                                                        | 210      | 1     |
| y28 | Performance Guarantees For Individualized Treatment Rules                                                                       | 219      | 2     |
| y29 | Ridge Regression - Biased Estimation For Nonorthogonal Problems                                                                 | 1402     |       |
| y29 | Regularization And Variable Selection Via The Elastic Net                                                                       | 1584     | 1     |
| y29 | Performance Of Some New Ridge Regression Estimators                                                                             | 233      | 1     |
| y30 | Estimation In A Cox Proportional Hazards Cure Model                                                                             | 279      | 1     |
| y30 | Survival Curve For Cancer Patients Following Treatment                                                                          | 319      |       |
| y30 | A Mixture Model Combining Logistic-Regression With Proportional Hazards Regression                                              | 258      |       |

Table 35: Y (incoming citation) factor hubs - k = 30,  $\ell_z$  = 70000,  $\ell_y$  = 70000 (continued)

### F.5 Z hubs as clipping parameters vary

Table 36: Z (outgoing citation) factor hubs - k = 30,  $\ell_z$  = 1,  $\ell_y$  = 1

| ID  | Title                                                                         | Cited by | Cites |
|-----|-------------------------------------------------------------------------------|----------|-------|
| z01 | Scad-Penalized Regression In Additive Partially Linear Proportional Hazards   | 3        | 37    |
|     | Models With An Ultra-High-Dimensional Linear Part                             |          |       |
| z01 | Scad-Penalized Least Absolute Deviation Regression In High-Dimensional Models | 5        | 29    |
| z01 | Regularization Parameter Selections Via Generalized Information Criterion     | 102      | 27    |
| z02 | Bayesian Statistics In Medicine: A 25 Year Review                             | 23       | 511   |
| z02 | Construction Of Optimal Multi-Level Supersaturated Designs                    | 47       | 32    |
| z02 | Methodological Issues With Adaptation Of Clinical Trial Design                | 12       | 41    |
| z03 | Are Nonprofit Antipoverty Organizations Located Where They Are Needed? A      | 1        | 21    |
|     | Spatial Analysis Of The Greater Hartford Region                               |          |       |
| z03 | Space-Time Interactions In Bayesian Disease Mapping With Recent Tools:        | 0        | 25    |
|     | Making Things Easier For Practitioners                                        |          |       |
| z03 | Bayesian Shared Spatial-Component Models To Combine And Borrow Strength       | 2        | 25    |
|     | Across Sparse Disease Surveillance Sources                                    |          |       |

| ID         | Title                                                                                                                                                                               | Cited by      | Cites                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|
| z04        | Maximum Likelihood Estimation In Semiparametric Regression Models With<br>Censored Data                                                                                             | 204           | 53                                      |
| z04        | Estimation For High-Dimensional Linear Mixed-Effects Models Using L <sub>1</sub> -Penalization                                                                                      | 47            | 24                                      |
| z04        | Shared Frailty Models For Recurrent Events And A Terminal Event                                                                                                                     |               | 22                                      |
| z05        | An Overview Of Semiparametric Models In Survival Analysis<br>Fifty Years Of The Cox Model                                                                                           | 5             | 77<br>42                                |
| z05<br>z05 | Marginal Screening For High-Dimensional Predictors Of Survival Outcomes                                                                                                             | $\frac{1}{2}$ | $\begin{array}{c} 43 \\ 56 \end{array}$ |
| z06        | Asymmetric Clusters And Outliers: Mixtures Of Multivariate Contaminated<br>Shifted Asymmetric Laplace Distributions                                                                 | 11            | 66                                      |
| z06        | The Multivariate Leptokurtic-Normal Distribution And Its Application In<br>Model-Based Clustering                                                                                   | 25            | 56                                      |
| z06        | A Mixture Of Generalized Hyperbolic Distributions                                                                                                                                   | 60            | 39                                      |
| z07        | Matching Methods For Causal Inference: A Review And A Look Forward                                                                                                                  | 272           | 66                                      |
| z07<br>z07 | Covariate Balancing Propensity Score<br>Balancing Vs Modeling Approaches To Weighting In Practice                                                                                   | $148 \\ 13$   | $\frac{34}{38}$                         |
| z08        | A Review Of Modern Multiple Hypothesis Testing, With Particular Attention To                                                                                                        | 40            | 50<br>70                                |
|            | The False Discovery Proportion                                                                                                                                                      |               |                                         |
| z08<br>z08 | Multiple Hypothesis Testing In Genomics<br>Adaptive False Discovery Rate Control For Heterogeneous Data                                                                             | $21 \\ 7$     | $\begin{array}{c} 65\\ 37\end{array}$   |
|            |                                                                                                                                                                                     |               |                                         |
| z09<br>z09 | Experiments In Stochastic Computation For High-Dimensional Graphical Models<br>Covariance Matrix Selection And Estimation Via Penalised Normal Likelihood                           | $95 \\ 159$   | $12 \\ 19$                              |
| z09        | Evaluation Of Community-Intervent Ion Trials Via Generalized Linear Mixed<br>Models                                                                                                 | 6             | 17                                      |
| z10        | Mixture Models With A Prior On The Number Of Components                                                                                                                             | 70            | 67                                      |
| z10        | The Nested Dirichlet Process                                                                                                                                                        | 69            | 36                                      |
| z10        | A Comparative Review Of Variable Selection Techniques For Covariate<br>Dependent Dirichlet Process Mixture Models                                                                   | 9             | 43                                      |
| z11        | A Review On Dimension Reduction                                                                                                                                                     | 59            | 74                                      |
| z11        | Sufficient Dimension Reduction Via Inverse Regression: A Minimum Discrepancy<br>Approach                                                                                            | 179           | 35                                      |
| z11        | Feature Filter For Estimating Central Mean Subspace And Its Sparse Solution                                                                                                         | 1             | 53                                      |
| z12        | Modeling Multiple Regimes In Financial Volatility With A Flexible Coefficient<br>Garch(1,1) Model                                                                                   | 9             | 30                                      |
| z12        | Automated Inference And Learning In Modeling Financial Volatility                                                                                                                   | 34            | 24                                      |
| z12        | Pseudo-Maximum Likelihood Estimation Of $\operatorname{Arch}(\infty)$ Models                                                                                                        | 27            | 22                                      |
| z13        | A Tutorial On The Lasso Approach To Sparse Modeling                                                                                                                                 | 24            | 16<br>22                                |
| z13<br>z13 | Regularized Partial Least Squares With An Application To Nmr Spectroscopy<br>Sparse Partial Least Squares Regression For Simultaneous Dimension Reduction<br>And Variable Selection |               | $\frac{22}{24}$                         |
| z14        | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                                                                      | 812           | 109                                     |
| z14        | High-Dimensional Bayesian Geostatistics                                                                                                                                             | 23            | 51<br>17                                |
| z14        | Space-Time Covariance Functions                                                                                                                                                     | 164           | 17                                      |
| z15        | A Review Of Empirical Likelihood Methods For Time Series                                                                                                                            | 18<br>81      | 76<br>63                                |
| z15<br>z15 | A Review On Empirical Likelihood Methods For Regression<br>Empirical Likelihood For A Varying Coefficient Model With Longitudinal Data                                              | 81<br>133     | $63 \\ 34$                              |
| z16        | Improving The Correlation Structure Selection Approach For Generalized                                                                                                              | 19            | 29                                      |
| z16        | Estimating Equations And Balanced Longitudinal Data<br>Finite Sample Adjustments In Estimating Equations And Covariance Estimators<br>For Intracluster Correlations                 | 21            | 32                                      |

Table 36: Z (outgoing citation) factor hubs - k = 30,  $\ell_z = 1$ ,  $\ell_y = 1$  (continued)

| ID         | Title                                                                                                                                                                      | Cited by                              | Cites           |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|
| z16        | Criterion For The Simultaneous Selection Of A Working Correlation Structure<br>And Either Generalized Estimating Equations Or The Quadratic Inference<br>Function Approach | 10                                    | 34              |
| z17        | Methods For Scalar-On-Function Regression                                                                                                                                  | 58                                    | 124             |
| z17        | A Survey Of Functional Principal Component Analysis                                                                                                                        | 24                                    | 88              |
| z17        | Functional Response Models                                                                                                                                                 | 70                                    | 21              |
| z18        | An Overview On The Progeny Of The Skew-Normal Family-A Personal<br>Perspective                                                                                             | 4                                     | 104             |
| z18<br>z18 | A Unified View On Skewed Distributions Arising From Selections<br>The Skew-Normal Distribution And Related Multivariate Families                                           | $106 \\ 255$                          | $37 \\ 36$      |
| z19        | Posterior Inference In Bayesian Quantile Regression With Asymmetric Laplace<br>Likelihood                                                                                  | 33                                    | 49              |
| z19        | Multiple Quantile Modeling Via Reduced-Rank Regression                                                                                                                     | 1                                     | 37              |
| z19        | Bayesian Model Selection In Ordinal Quantile Regression                                                                                                                    | 6                                     | 49              |
| z20        | Bayesian Approaches To Variable Selection: A Comparative Study From                                                                                                        | 4                                     | 78              |
| z20        | Practical Perspectives<br>Prior Distributions For Objective Bayesian Analysis                                                                                              | 27                                    | 141             |
| z20        | Mixtures Of $G$ Priors For Bayesian Variable Selection                                                                                                                     | 279                                   | 22              |
| z21        | A Brief Review Of Approaches To Non-Ignorable Non-Response                                                                                                                 | 4                                     | 68              |
| z21        | Missing-Data Methods For Generalized Linear Models: A Comparative Review                                                                                                   | 148                                   | 64              |
| z21        | Analysis Of Longitudinal Data With Drop-Out: Objectives, Assumptions And A Proposal                                                                                        | 40                                    | 53              |
| z22        | Group Sequential And Adaptive Designs - A Review Of Basic Concepts And Points Of Discussion                                                                                | 12                                    | 70              |
| z22        | Twenty-Five Years Of Confirmatory Adaptive Designs: Opportunities And Pitfalls                                                                                             | 53                                    | 11;             |
| z22        | Adaptive Seamless Designs: Selection And Prospective Testing Of Hypotheses                                                                                                 |                                       | 61              |
| z23        | Semiparametric Regression During 2003-2007                                                                                                                                 | 58                                    | 219             |
| z23<br>z23 | Twenty Years Of P-Splines<br>Fast Stable Restricted Maximum Likelihood And Marginal Likelihood                                                                             | $\begin{array}{c} 42\\224\end{array}$ | 103<br>35       |
| 220        | Estimation Of Semiparametric Generalized Linear Models                                                                                                                     | 224                                   | 00              |
| z24        | Random Matrix Theory In Statistics: A Review                                                                                                                               | 53                                    | 148             |
| z24        | Estimating Structured High-Dimensional Covariance And Precision Matrices:<br>Optimal Rates And Adaptive Estimation                                                         | 63                                    | 96              |
| z24        | Recent Developments In High Dimensional Covariance Estimation And Its<br>Related Issues, A Review                                                                          | 2                                     | 54              |
| z25        | Bayesian Computation: A Summary Of The Current State, And Samples<br>Backwards And Forwards                                                                                | 20                                    | 101             |
| z25        | The Hastings Algorithm At Fifty                                                                                                                                            | 7                                     | 78              |
| z25        | A Short History Of Markov Chain Monte Carlo: Subjective Recollections From<br>Incomplete Data                                                                              | 17                                    | 68              |
| z26        | Nonparametric Inference With Generalized Likelihood Ratio Tests                                                                                                            | 46                                    | 67              |
| z26        | Statistical Inference In Partially-Varying-Coefficient Single-Index Model                                                                                                  | 26                                    | 27              |
| z26        | Varying Coefficient Regression Models: A Review And New Developments                                                                                                       | 40                                    | 64              |
| z27        | Joint Modeling Of Longitudinal And Time-To-Event Data: An Overview                                                                                                         | 341                                   | 36              |
| z27<br>z27 | Missing Data Methods In Longitudinal Studies: A Review<br>Joint Modeling Of Longitudinal And Survival Data Via A Common Frailty                                            | $76 \\ 22$                            | $\frac{79}{21}$ |
| z28        | Causal Inference Using Potential Outcomes: Design, Modeling, Decisions                                                                                                     | 175                                   | 32              |
| z28<br>z28 | Instrumental Variables: An Econometrician's Perspective                                                                                                                    | 175<br>25                             | 34<br>88        |
| z28        | Causal Inference: A Missing Data Perspective                                                                                                                               | 20<br>21                              | 104             |
| z29        | Modified Liu-Type Estimator Based On (Rk) Class Estimator                                                                                                                  | 17                                    | 18              |
| z29        | A Simulation Study On Some Restricted Ridge Regression Estimators                                                                                                          | 12                                    | 17              |

Table 36: Z (outgoing citation) factor hubs - k = 30,  $\ell_z$  = 1,  $\ell_y$  = 1 (continued)

| ID  | Title                                                                                                       | Cited by | Cites |
|-----|-------------------------------------------------------------------------------------------------------------|----------|-------|
| z29 | Performance Of Kibria's Method For The Heteroscedastic Ridge Regression<br>Model: Some Monte Carlo Evidence | 20       | 24    |
| z30 | Piecewise Linear Approximations For Cure Rate Models And Associated<br>Inferential Issues                   | 20       | 44    |
| z30 | Proportional Hazards Under Conway-Maxwell-Poisson Cure Rate Model And<br>Associated Inference               | 8        | 31    |
| z30 | A Support Vector Machine-Based Cure Rate Model For Interval Censored Data                                   | 0        | 50    |

Table 36: Z (outgoing citation) factor hubs - k = 30,  $\ell_z$  = 1,  $\ell_y$  = 1 (continued)

Table 37: Z (outgoing citation) factor hubs - k = 30,  $\ell_z$  = 25000,  $\ell_y$  = 25000

| ID         | Title                                                                                                                                                      | Cited by                                 | Cites           |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|
| z01        | Scad-Penalized Regression In Additive Partially Linear Proportional Hazards<br>Models With An Ultra-High-Dimensional Linear Part                           | 3                                        | 37              |
| z01<br>z01 | Scad-Penalized Least Absolute Deviation Regression In High-Dimensional Models<br>Regularization Parameter Selections Via Generalized Information Criterion | 5<br>102                                 | $\frac{29}{27}$ |
| z02        | Bayesian Statistics In Medicine: A 25 Year Review                                                                                                          | 23                                       | <br>511         |
| z02        | Construction Of Optimal Multi-Level Supersaturated Designs                                                                                                 | 47                                       | 32              |
| z02        | Methodological Issues With Adaptation Of Clinical Trial Design                                                                                             | 12                                       | 41              |
| z03        | Are Nonprofit Antipoverty Organizations Located Where They Are Needed? A<br>Spatial Analysis Of The Greater Hartford Region                                | 1                                        | 21              |
| z03        | Space-Time Interactions In Bayesian Disease Mapping With Recent Tools:<br>Making Things Easier For Practitioners                                           | 0                                        | 25              |
| z03        | Bayesian Shared Spatial-Component Models To Combine And Borrow Strength<br>Across Sparse Disease Surveillance Sources                                      | 2                                        | 25              |
| z04        | Maximum Likelihood Estimation In Semiparametric Regression Models With<br>Censored Data                                                                    | 204                                      | 53              |
| z04        | Estimation For High-Dimensional Linear Mixed-Effects Models Using L <sub>1</sub> -Penalization                                                             | 47                                       | 24              |
| z04        | Shared Frailty Models For Recurrent Events And A Terminal Event                                                                                            | 173                                      | 22              |
| z05        | An Overview Of Semiparametric Models In Survival Analysis                                                                                                  | 5                                        | 77              |
| z05<br>z05 | Fifty Years Of The Cox Model<br>Marginal Screening For High-Dimensional Predictors Of Survival Outcomes                                                    | 1 2                                      | $43 \\ 56$      |
|            |                                                                                                                                                            |                                          |                 |
| z06        | Asymmetric Clusters And Outliers: Mixtures Of Multivariate Contaminated<br>Shifted Asymmetric Laplace Distributions                                        | 11                                       | 66              |
| z06        | The Multivariate Leptokurtic-Normal Distribution And Its Application In<br>Model-Based Clustering                                                          | 25                                       | 56              |
| z06        | A Mixture Of Generalized Hyperbolic Distributions                                                                                                          | 60                                       | 39              |
| z07        | Matching Methods For Causal Inference: A Review And A Look Forward                                                                                         | 272                                      | 66              |
| z07<br>z07 | Covariate Balancing Propensity Score<br>Balancing Vs Modeling Approaches To Weighting In Practice                                                          | $\begin{array}{c} 148 \\ 13 \end{array}$ | $\frac{34}{38}$ |
|            |                                                                                                                                                            |                                          |                 |
| z08        | A Review Of Modern Multiple Hypothesis Testing, With Particular Attention To<br>The False Discovery Proportion                                             | 40                                       | 70              |
| z08        | Multiple Hypothesis Testing In Genomics                                                                                                                    | 21                                       | 65              |
| z08        | Adaptive False Discovery Rate Control For Heterogeneous Data                                                                                               | 7                                        | 37              |
| z09        | Experiments In Stochastic Computation For High-Dimensional Graphical Models                                                                                | 95                                       | 12              |
| z09<br>z09 | Covariance Matrix Selection And Estimation Via Penalised Normal Likelihood<br>Evaluation Of Community-Intervent Ion Trials Via Generalized Linear Mixed    | $159 \\ 6$                               | $19 \\ 17$      |
| 203        | Models                                                                                                                                                     | 0                                        | 11              |
| z10        | Mixture Models With A Prior On The Number Of Components                                                                                                    | 70                                       | 67              |
| z10        | The Nested Dirichlet Process                                                                                                                               | 69                                       | 36              |
| z10        | A Comparative Review Of Variable Selection Techniques For Covariate<br>Dependent Dirichlet Process Mixture Models                                          | 9                                        | 43              |

Table 37: Z (outgoing citation) factor hubs - k = 30,  $\ell_z = 25000$ ,  $\ell_y = 25000$  (continued)

| ID         | Title                                                                                                                                                                               | Cited by                                 | Cites           |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|
| z11<br>z11 | A Review On Dimension Reduction<br>Sufficient Dimension Reduction Via Inverse Regression: A Minimum Discrepancy<br>Approach                                                         | 59<br>179                                | 74<br>35        |
| z11        | Feature Filter For Estimating Central Mean Subspace And Its Sparse Solution                                                                                                         | 1                                        | 53              |
| z12        | Modeling Multiple Regimes In Financial Volatility With A Flexible Coefficient Garch(1,1) Model                                                                                      | 9                                        | 30              |
| z12<br>z12 | Automated Inference And Learning In Modeling Financial Volatility Pseudo-Maximum Likelihood Estimation Of $Arch(\infty)$ Models                                                     | $\frac{34}{27}$                          | $24 \\ 22$      |
| z13        | A Tutorial On The Lasso Approach To Sparse Modeling                                                                                                                                 | 24                                       | 16              |
| z13<br>z13 | Regularized Partial Least Squares With An Application To Nmr Spectroscopy<br>Sparse Partial Least Squares Regression For Simultaneous Dimension Reduction<br>And Variable Selection | $\frac{6}{145}$                          | $\frac{22}{24}$ |
| z14        | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                                                                      | 812                                      | 109             |
| z14        | High-Dimensional Bayesian Geostatistics                                                                                                                                             | 23<br>164                                | 5               |
| z14        | Space-Time Covariance Functions                                                                                                                                                     | 164                                      | 1'              |
| z15<br>z15 | A Review Of Empirical Likelihood Methods For Time Series<br>A Review On Empirical Likelihood Methods For Regression                                                                 | 18<br>81                                 | 70<br>63        |
| z15        | Empirical Likelihood For A Varying Coefficient Model With Longitudinal Data                                                                                                         | 133                                      | 3               |
| z16        | Improving The Correlation Structure Selection Approach For Generalized<br>Estimating Equations And Balanced Longitudinal Data                                                       | 19                                       | 2               |
| z16        | Finite Sample Adjustments In Estimating Equations And Covariance Estimators<br>For Intracluster Correlations                                                                        | 21                                       | 3               |
| z16        | Criterion For The Simultaneous Selection Of A Working Correlation Structure<br>And Either Generalized Estimating Equations Or The Quadratic Inference<br>Function Approach          | 10                                       | 3               |
| z17        | Methods For Scalar-On-Function Regression                                                                                                                                           | 58                                       | 12              |
| z17<br>z17 | A Survey Of Functional Principal Component Analysis<br>Functional Response Models                                                                                                   | 24<br>70                                 | $\frac{8}{2}$   |
| z18        | An Overview On The Progeny Of The Skew-Normal Family-A Personal Perspective                                                                                                         | 4                                        | 10              |
| z18<br>z18 | A Unified View On Skewed Distributions Arising From Selections<br>The Skew-Normal Distribution And Related Multivariate Families                                                    | $106 \\ 255$                             | 3<br>3          |
| z19        | Posterior Inference In Bayesian Quantile Regression With Asymmetric Laplace Likelihood                                                                                              | 33                                       | 4               |
| z19<br>z19 | Multiple Quantile Modeling Via Reduced-Rank Regression<br>Bayesian Model Selection In Ordinal Quantile Regression                                                                   | $\begin{array}{c} 1 \\ 6 \end{array}$    | $\frac{3}{4}$   |
| z20        | Bayesian Approaches To Variable Selection: A Comparative Study From<br>Practical Perspectives                                                                                       | 4                                        | 7               |
| z20<br>z20 | Prior Distributions For Objective Bayesian Analysis<br>Mixtures Of $G$ Priors For Bayesian Variable Selection                                                                       | $27 \\ 279$                              | 14 2            |
| z21        | A Brief Review Of Approaches To Non-Ignorable Non-Response                                                                                                                          | 4                                        | 6               |
| z21<br>z21 | Missing-Data Methods For Generalized Linear Models: A Comparative Review<br>Analysis Of Longitudinal Data With Drop-Out: Objectives, Assumptions And A<br>Proposal                  | $\begin{array}{c} 148 \\ 40 \end{array}$ | 6<br>5          |
| z22        | Group Sequential And Adaptive Designs - A Review Of Basic Concepts And                                                                                                              | 12                                       | 7               |
| z22        | Points Of Discussion<br>Twenty-Five Years Of Confirmatory Adaptive Designs: Opportunities And<br>Pitfalls                                                                           | 53                                       | 11              |
|            |                                                                                                                                                                                     | 91                                       | 6               |
| z22        | Adaptive Seamless Designs: Selection And Prospective Testing Of Hypotheses                                                                                                          | 31                                       | 0               |

| ID  | Title                                                                                                                       | Cited by | Cites |
|-----|-----------------------------------------------------------------------------------------------------------------------------|----------|-------|
| z23 | Fast Stable Restricted Maximum Likelihood And Marginal Likelihood<br>Estimation Of Semiparametric Generalized Linear Models | 224      | 35    |
| z24 | Random Matrix Theory In Statistics: A Review                                                                                | 53       | 148   |
| z24 | Estimating Structured High-Dimensional Covariance And Precision Matrices:<br>Optimal Rates And Adaptive Estimation          | 63       | 96    |
| z24 | Recent Developments In High Dimensional Covariance Estimation And Its Related Issues, A Review                              | 2        | 54    |
| z25 | Bayesian Computation: A Summary Of The Current State, And Samples<br>Backwards And Forwards                                 | 20       | 101   |
| z25 | The Hastings Algorithm At Fifty                                                                                             | 7        | 78    |
| z25 | A Short History Of Markov Chain Monte Carlo: Subjective Recollections From Incomplete Data                                  | 17       | 68    |
| z26 | Nonparametric Inference With Generalized Likelihood Ratio Tests                                                             | 46       | 67    |
| z26 | Statistical Inference In Partially-Varying-Coefficient Single-Index Model                                                   | 26       | 27    |
| z26 | Varying Coefficient Regression Models: A Review And New Developments                                                        | 40       | 64    |
| z27 | Joint Modeling Of Longitudinal And Time-To-Event Data: An Overview                                                          | 341      | 36    |
| z27 | Missing Data Methods In Longitudinal Studies: A Review                                                                      | 76       | 79    |
| z27 | Joint Modeling Of Longitudinal And Survival Data Via A Common Frailty                                                       | 22       | 21    |
| z28 | Causal Inference Using Potential Outcomes: Design, Modeling, Decisions                                                      | 175      | 32    |
| z28 | Instrumental Variables: An Econometrician's Perspective                                                                     | 25       | 88    |
| z28 | Causal Inference: A Missing Data Perspective                                                                                | 21       | 104   |
| z29 | Modified Liu-Type Estimator Based On (Rk) Class Estimator                                                                   | 17       | 18    |
| z29 | A Simulation Study On Some Restricted Ridge Regression Estimators                                                           | 12       | 17    |
| z29 | Performance Of Kibria's Method For The Heteroscedastic Ridge Regression<br>Model: Some Monte Carlo Evidence                 | 20       | 24    |
| z30 | Piecewise Linear Approximations For Cure Rate Models And Associated<br>Inferential Issues                                   | 20       | 44    |
| z30 | Proportional Hazards Under Conway-Maxwell-Poisson Cure Rate Model And<br>Associated Inference                               | 8        | 31    |
| z30 | A Support Vector Machine-Based Cure Rate Model For Interval Censored Data                                                   | 0        | 50    |

Table 37: Z (outgoing citation) factor hubs - k = 30,  $\ell_z = 25000$ ,  $\ell_y = 25000$  (continued)

Table 38: Z (outgoing citation) factor hubs - k = 30,  $\ell_{\rm z}$  = 50000,  $\ell_{\rm y}$  = 50000

| ID  | Title                                                                                                                            | Cited by | Cites |
|-----|----------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| z01 | Scad-Penalized Regression In Additive Partially Linear Proportional Hazards<br>Models With An Ultra-High-Dimensional Linear Part |          | 37    |
| z01 | Scad-Penalized Least Absolute Deviation Regression In High-Dimensional Models                                                    | 5        | 29    |
| z01 | Regularization Parameter Selections Via Generalized Information Criterion                                                        | 102      | 27    |
| z02 | Bayesian Statistics In Medicine: A 25 Year Review                                                                                | 23       | 511   |
| z02 | Construction Of Optimal Multi-Level Supersaturated Designs                                                                       | 47       | 32    |
| z02 | Methodological Issues With Adaptation Of Clinical Trial Design                                                                   | 12       | 41    |
| z03 | Are Nonprofit Antipoverty Organizations Located Where They Are Needed? A<br>Spatial Analysis Of The Greater Hartford Region      | 1        | 21    |
| z03 | Space-Time Interactions In Bayesian Disease Mapping With Recent Tools:<br>Making Things Easier For Practitioners                 | 0        | 25    |
| z03 | Bayesian Shared Spatial-Component Models To Combine And Borrow Strength Across Sparse Disease Surveillance Sources               | 2        | 25    |
| z04 | Maximum Likelihood Estimation In Semiparametric Regression Models With<br>Censored Data                                          | 204      | 53    |
| z04 | Estimation For High-Dimensional Linear Mixed-Effects Models Using $L_1$ -Penalization                                            | 47       | 24    |
| z04 | Shared Frailty Models For Recurrent Events And A Terminal Event                                                                  | 173      | 22    |

Table 38: Z (outgoing citation) factor hubs - k = 30,  $\ell_z = 50000$ ,  $\ell_y = 50000$  (continued)

| ID       | Title                                                                                                                                                                      | Cited by | Cites       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| z05      | An Overview Of Semiparametric Models In Survival Analysis                                                                                                                  | 5        | 77          |
| z05      | Fifty Years Of The Cox Model                                                                                                                                               | 1        | 43          |
| :05      | Marginal Screening For High-Dimensional Predictors Of Survival Outcomes                                                                                                    | 2        | 56          |
| 06       | Asymmetric Clusters And Outliers: Mixtures Of Multivariate Contaminated<br>Shifted Asymmetric Laplace Distributions                                                        | 11       | 66          |
| 06       | The Multivariate Leptokurtic-Normal Distribution And Its Application In<br>Model-Based Clustering                                                                          | 25       | 56          |
| 06       | A Mixture Of Generalized Hyperbolic Distributions                                                                                                                          |          | 39          |
| 07       | Matching Methods For Causal Inference: A Review And A Look Forward                                                                                                         | 272      | 66          |
| 07       | Covariate Balancing Propensity Score                                                                                                                                       | 148      | $3^{\circ}$ |
| 07       | Balancing Vs Modeling Approaches To Weighting In Practice                                                                                                                  | 13       | 3           |
| :08      | A Review Of Modern Multiple Hypothesis Testing, With Particular Attention To<br>The False Discovery Proportion                                                             | 40       | 70          |
| 08       | Multiple Hypothesis Testing In Genomics                                                                                                                                    | 21       | 6           |
| 08       | Adaptive False Discovery Rate Control For Heterogeneous Data                                                                                                               | 7        | 3           |
| 09       | Experiments In Stochastic Computation For High-Dimensional Graphical Models                                                                                                | 95       | 1           |
| :09      | Covariance Matrix Selection And Estimation Via Penalised Normal Likelihood                                                                                                 | 159      | 1           |
| 09       | Evaluation Of Community-Intervent Ion Trials Via Generalized Linear Mixed Models                                                                                           | 6        | 1           |
| 10       | Mixture Models With A Prior On The Number Of Components                                                                                                                    | 70       | 6           |
| 10       | The Nested Dirichlet Process                                                                                                                                               | 69       | 3           |
| 10       | A Comparative Review Of Variable Selection Techniques For Covariate<br>Dependent Dirichlet Process Mixture Models                                                          | 9        | 4           |
| 11       | A Review On Dimension Reduction                                                                                                                                            | 59       | 7           |
| 11       | Sufficient Dimension Reduction Via Inverse Regression: A Minimum Discrepancy<br>Approach                                                                                   |          | 3           |
| 11       | Feature Filter For Estimating Central Mean Subspace And Its Sparse Solution                                                                                                | 1        | 5           |
| 12       | Modeling Multiple Regimes In Financial Volatility With A Flexible Coefficient<br>Garch(1,1) Model                                                                          |          | 3           |
| 12       | Automated Inference And Learning In Modeling Financial Volatility                                                                                                          | 34       | 2           |
| 12       | Pseudo-Maximum Likelihood Estimation Of $\operatorname{Arch}(\infty)$ Models                                                                                               | 27       | 2           |
| 13       | A Tutorial On The Lasso Approach To Sparse Modeling                                                                                                                        | 24       | 1           |
| 13       | Regularized Partial Least Squares With An Application To Nmr Spectroscopy                                                                                                  | 6        | 2           |
| 13       | Sparse Partial Least Squares Regression For Simultaneous Dimension Reduction<br>And Variable Selection                                                                     | 145      | 2           |
| :14      | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                                                             | 812      | 10          |
| :14      | High-Dimensional Bayesian Geostatistics                                                                                                                                    | 23       | 5           |
| 14       | Space-Time Covariance Functions                                                                                                                                            | 164      | 1           |
| 15       | A Review Of Empirical Likelihood Methods For Time Series                                                                                                                   | 18       | 7           |
| 15       | A Review On Empirical Likelihood Methods For Regression                                                                                                                    | 81       | 6           |
| 15       | Empirical Likelihood For A Varying Coefficient Model With Longitudinal Data                                                                                                | 133      | 3           |
| 16       | Improving The Correlation Structure Selection Approach For Generalized<br>Estimating Equations And Balanced Longitudinal Data                                              | 19       | 2           |
| 16       | Finite Sample Adjustments In Estimating Equations And Covariance Estimators<br>For Intracluster Correlations                                                               | 21       | 93          |
| :16      | Criterion For The Simultaneous Selection Of A Working Correlation Structure<br>And Either Generalized Estimating Equations Or The Quadratic Inference<br>Function Approach | 10       | 3           |
| 17       | Methods For Scalar-On-Function Regression                                                                                                                                  | 58       | 12          |
| 17       | A Survey Of Functional Principal Component Analysis                                                                                                                        | 24       | 8           |
| $_{217}$ | Functional Response Models                                                                                                                                                 | 70       | 2           |

Table 38: Z (outgoing citation) factor hubs - k = 30,  $\ell_z = 50000$ ,  $\ell_y = 50000$  (continued)

| ID         | Title                                                                                                                                                                            | Cited by     | Cite     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|
| z18        | An Overview On The Progeny Of The Skew-Normal Family-A Personal<br>Perspective                                                                                                   | 4            | 104      |
| z18<br>z18 | A Unified View On Skewed Distributions Arising From Selections<br>The Skew-Normal Distribution And Related Multivariate Families                                                 | $106 \\ 255$ | 3'<br>3( |
| z19        | Posterior Inference In Bayesian Quantile Regression With Asymmetric Laplace                                                                                                      | 33           | 4        |
| z19        | Likelihood<br>Multiple Quantile Modeling Via Reduced-Rank Regression                                                                                                             | 1            | 3'       |
| z19        | Bayesian Model Selection In Ordinal Quantile Regression                                                                                                                          | 6            | 4        |
| z20        | Bayesian Approaches To Variable Selection: A Comparative Study From<br>Practical Perspectives                                                                                    | 4            | 7        |
| z20        | Prior Distributions For Objective Bayesian Analysis                                                                                                                              | 27           | 14       |
| z20        | Mixtures Of $G$ Priors For Bayesian Variable Selection                                                                                                                           | 279          | 2        |
| z21        | A Brief Review Of Approaches To Non-Ignorable Non-Response                                                                                                                       | 4            | 6        |
| z21        | Missing-Data Methods For Generalized Linear Models: A Comparative Review                                                                                                         | 148          | 6        |
| z21        | Analysis Of Longitudinal Data With Drop-Out: Objectives, Assumptions And A Proposal                                                                                              | 40           | 5        |
| z22        | Group Sequential And Adaptive Designs - A Review Of Basic Concepts And Points Of Discussion                                                                                      | 12           | 7        |
| z22        | Twenty-Five Years Of Confirmatory Adaptive Designs: Opportunities And Pitfalls                                                                                                   | 53           | 11       |
| z22        | Adaptive Seamless Designs: Selection And Prospective Testing Of Hypotheses                                                                                                       | 31           | 6        |
| z23        | Semiparametric Regression During 2003-2007                                                                                                                                       | 58           | 21       |
| z23        | Twenty Years Of P-Splines                                                                                                                                                        | 42           | 10       |
| z23        | Fast Stable Restricted Maximum Likelihood And Marginal Likelihood<br>Estimation Of Semiparametric Generalized Linear Models                                                      | 224          | 3        |
| z24        | Random Matrix Theory In Statistics: A Review                                                                                                                                     | 53           | 14       |
| z24        | Estimating Structured High-Dimensional Covariance And Precision Matrices:<br>Optimal Rates And Adaptive Estimation                                                               | 63           | 9        |
| z24        | Recent Developments In High Dimensional Covariance Estimation And Its<br>Related Issues, A Review                                                                                | 2            | 5        |
| z25        | Bayesian Computation: A Summary Of The Current State, And Samples<br>Backwards And Forwards                                                                                      | 20           | 10       |
| z25        | The Hastings Algorithm At Fifty                                                                                                                                                  | 7            | 7        |
| z25        | A Short History Of Markov Chain Monte Carlo: Subjective Recollections From Incomplete Data                                                                                       | 17           | 6        |
| z26        | Nonparametric Inference With Generalized Likelihood Ratio Tests                                                                                                                  | 46           | 6        |
| z26        | Statistical Inference In Partially-Varying-Coefficient Single-Index Model                                                                                                        | 26           | 2        |
| z26        | Varying Coefficient Regression Models: A Review And New Developments                                                                                                             | 40           | 6        |
| z27        | Joint Modeling Of Longitudinal And Time-To-Event Data: An Overview                                                                                                               | 341          | 3        |
| z27        | Missing Data Methods In Longitudinal Studies: A Review                                                                                                                           | 76           | 7        |
| z27        | Joint Modeling Of Longitudinal And Survival Data Via A Common Frailty                                                                                                            | 22           | 2        |
| z28        | Causal Inference Using Potential Outcomes: Design, Modeling, Decisions                                                                                                           | 175          | 3        |
| z28        | Instrumental Variables: An Econometrician's Perspective                                                                                                                          | 25           | 8        |
| z28        | Causal Inference: A Missing Data Perspective                                                                                                                                     | 21           | 10       |
| z29        | Modified Liu-Type Estimator Based On (Rk) Class Estimator                                                                                                                        | 17           | 1        |
| z29<br>z29 | A Simulation Study On Some Restricted Ridge Regression Estimators<br>Performance Of Kibria's Method For The Heteroscedastic Ridge Regression<br>Model: Some Monte Carlo Evidence | 12<br>20     | 1<br>2   |
| z30        | Piecewise Linear Approximations For Cure Rate Models And Associated                                                                                                              | 20           | 4        |
| z30        | Inferential Issues<br>Proportional Hazards Under Conway-Maxwell-Poisson Cure Rate Model And<br>Associated Inference                                                              | 8            | 3        |

0

| Table 39: $Z$ ( | (outgoing citation) | factor hubs - $k = 30$ , | $\ell_{\rm z} = 70000,  \ell_{\rm y} = 70000$ |
|-----------------|---------------------|--------------------------|-----------------------------------------------|
|-----------------|---------------------|--------------------------|-----------------------------------------------|

| Scad-Penalized Regression In Additive Partially Linear Proportional Hazards                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scad-Penalized Regression In Additive Partially Linear Proportional Hazards<br>Models With An Ultra-High-Dimensional Linear Part                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Scad-Penalized Least Absolute Deviation Regression In High-Dimensional Models<br>Regularization Parameter Selections Via Generalized Information Criterion | $5 \\ 102$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bayesian Statistics In Medicine: A 25 Year Review                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Construction Of Optimal Multi-Level Supersaturated Designs                                                                                                 | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Methodological Issues With Adaptation Of Clinical Trial Design                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Are Nonprofit Antipoverty Organizations Located Where They Are Needed? A<br>Spatial Analysis Of The Greater Hartford Region                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Making Things Easier For Practitioners                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bayesian Shared Spatial-Component Models To Combine And Borrow Strength<br>Across Sparse Disease Surveillance Sources                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Maximum Likelihood Estimation In Semiparametric Regression Models With Censored Data                                                                       | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Estimation For High-Dimensional Linear Mixed-Effects Models Using $L_1$ -Penalization                                                                      | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Shared Frailty Models For Recurrent Events And A Terminal Event                                                                                            | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Asymmetric Clusters And Outliers: Mixtures Of Multivariate Contaminated                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Shifted Asymmetric Laplace Distributions<br>The Multivariate Leptokurtic-Normal Distribution And Its Application In<br>Model-Based Clustering              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A Mixture Of Generalized Hyperbolic Distributions                                                                                                          | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Matching Methods For Causal Inference: A Review And A Look Forward                                                                                         | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Covariate Balancing Propensity Score                                                                                                                       | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Balancing Vs Modeling Approaches To Weighting In Practice                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The False Discovery Proportion                                                                                                                             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 01 0                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $6 \\ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| · · · · ·                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Evaluation Of Community-Intervent Ion Trials Via Generalized Linear Mixed<br>Models                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mixture Models With A Prior On The Number Of Components                                                                                                    | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The Nested Dirichlet Process                                                                                                                               | 69<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dependent Dirichlet Process Mixture Models                                                                                                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A Review On Dimension Reduction                                                                                                                            | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sufficient Dimension Reduction Via Inverse Regression: A Minimum Discrepancy<br>Approach                                                                   | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Feature Filter For Estimating Central Mean Subspace And Its Sparse Solution                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Modeling Multiple Regimes In Financial Volatility With A Flexible Coefficient $\operatorname{Garch}(1,1)$ Model                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Automated Inference And Learning In Modeling Financial Volatility                                                                                          | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                            | Construction Of Optimal Multi-Level Supersaturated Designs<br>Methodological Issues With Adaptation Of Clinical Trial Design<br>Are Nonprofit Antipoverty Organizations Located Where They Are Needed? A<br>Spatial Analysis Of The Greater Hartford Region<br>Space-Time Interactions In Bayesian Disease Mapping With Recent Tools:<br>Making Things Easier For Practitioners<br>Bayesian Shared Spatial-Component Models To Combine And Borrow Strength<br>Across Sparse Disease Surveillance Sources<br>Maximum Likelihood Estimation In Semiparametric Regression Models With<br>Censored Data<br>Estimation For High-Dimensional Linear Mixed-Effects Models Using<br>L1-Penalization<br>Shared Frailty Models For Recurrent Events And A Terminal Event<br>An Overview Of Semiparametric Models In Survival Analysis<br>Fifty Years Of The Cox Model<br>Marginal Screening For High-Dimensional Predictors Of Survival Outcomes<br>Asymmetric Clusters And Outliers: Mixtures Of Multivariate Contaminated<br>Shifted Asymmetric Laplace Distributions<br>The Multivariate Leptokurtic-Normal Distribution And Its Application In<br>Model-Based Clustering<br>A Mixture Of Generalized Hyperbolic Distributions<br>Matching Methods For Causal Inference: A Review And A Look Forward<br>Covariate Balancing Propensity Score<br>Balancing Vs Modeling Approaches To Weighting In Practice<br>A Review Of Modern Multiple Hypothesis Testing, With Particular Attention To<br>The False Discovery Proportion<br>Multiple Hypothesis Testing In Genomics<br>Adaptive False Discovery Rate Control For Heterogeneous Data<br>Experiments In Stochastic Computation For High-Dimensional Graphical Models<br>Covariance Matrix Selection And Estimation Via Penalised Normal Likelihood<br>Evaluation Of Community-Intervent Ion Trials Via Generalized Linear Mixed<br>Models<br>Mixture Models With A Prior On The Number Of Components<br>The Nested Dirichlet Process<br>A Comparative Review Of Variable Selection Techniques For Covariate<br>Dependent Dirichlet Process Mixture Models<br>A Review On Dimension Reduction<br>Sufficient Dimension Reduction Via Inverse Regression: A Minimum Discrepancy<br>Approach<br>Peature Filtt | Construction Of Optimal Multi-Level Supersaturated Designs       47         Methodological Issues With Adaptation Of Clinical Trial Design       12         Are Nonprofit Antipoverty Organizations Located Where They Are Needed? A       1         Spatial Analysis Of The Greater Hartford Region       0         Making Things Easier For Practitioners       0         Bayesian Shared Spatial-Component Models To Combine And Borrow Strength       2         Across Sparse Disease Surveillance Sources       204         Censored Data       204         Estimation For High-Dimensional Linear Mixed-Effects Models Using       47         Li-Penalization       1         Shared Frailty Models For Recurrent Events And A Terminal Event       173         An Overview Of Semiparametric Models In Survival Analysis       5         Fifty Years Of The Cox Model       1         Marginal Screening For High-Dimensional Predictors Of Survival Outcomes       2         Asymmetric Luplace Distributions       60         Matching Methods For Causal Inference: A Review And A Look Forward       272         Covariate Balancing Propensity Score       148         Balancing Vs Modeling Approaches To Weighting In Practice       13         A Review Of Modern Multiple Hypothesis Testing, With Particular Attention To       40         The False Discovery Proportion |

Table 39: Z (outgoing citation) factor hubs - k = 30,  $\ell_z = 70000$ ,  $\ell_y = 70000$  (continued)

| ID         | Title                                                                                                                                                                      | Cited by | Cites                                  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------|
| z13        | A Tutorial On The Lasso Approach To Sparse Modeling                                                                                                                        | 24       | 16                                     |
| z13        | Regularized Partial Least Squares With An Application To Nmr Spectroscopy                                                                                                  | 6        | 22                                     |
| z13        | Sparse Partial Least Squares Regression For Simultaneous Dimension Reduction<br>And Variable Selection                                                                     | 145      | 24                                     |
| z14        | Approximate Bayesian Inference For Latent Gaussian Models By Using<br>Integrated Nested Laplace Approximations                                                             | 812      | 109                                    |
| z14        | High-Dimensional Bayesian Geostatistics                                                                                                                                    | 23       | 51                                     |
| z14        | Space-Time Covariance Functions                                                                                                                                            | 164      | 17                                     |
| z15        | A Review Of Empirical Likelihood Methods For Time Series                                                                                                                   | 18       | 76                                     |
| z15        | A Review On Empirical Likelihood Methods For Regression                                                                                                                    | 81       | 63                                     |
| z15        | Empirical Likelihood For A Varying Coefficient Model With Longitudinal Data                                                                                                | 133      | 34                                     |
| z16        | Improving The Correlation Structure Selection Approach For Generalized<br>Estimating Equations And Balanced Longitudinal Data                                              | 19       | 29                                     |
| z16        | Finite Sample Adjustments In Estimating Equations And Covariance Estimators<br>For Intracluster Correlations                                                               | 21       | 32                                     |
| z16        | Criterion For The Simultaneous Selection Of A Working Correlation Structure<br>And Either Generalized Estimating Equations Or The Quadratic Inference<br>Function Approach | 10       | 34                                     |
| z17        | Methods For Scalar-On-Function Regression                                                                                                                                  | 58       | 124                                    |
| z17        | A Survey Of Functional Principal Component Analysis                                                                                                                        | 24       | 88                                     |
| z17        | Functional Response Models                                                                                                                                                 | 70       | 21                                     |
| z18        | An Overview On The Progeny Of The Skew-Normal Family-A Personal<br>Perspective                                                                                             | 4        | 104                                    |
| z18        | A Unified View On Skewed Distributions Arising From Selections                                                                                                             | 106      | 37                                     |
| z18        | The Skew-Normal Distribution And Related Multivariate Families                                                                                                             | 255      | 36                                     |
| z19        | Posterior Inference In Bayesian Quantile Regression With Asymmetric Laplace Likelihood                                                                                     | 33       | 49                                     |
| z19<br>z19 | Multiple Quantile Modeling Via Reduced-Rank Regression<br>Bayesian Model Selection In Ordinal Quantile Regression                                                          | $1 \\ 6$ | $\begin{array}{c} 37\\ 49 \end{array}$ |
| z20        | Bayesian Approaches To Variable Selection: A Comparative Study From<br>Practical Perspectives                                                                              | 4        | 78                                     |
| z20        | Prior Distributions For Objective Bayesian Analysis                                                                                                                        | 27       | 141                                    |
| z20        | Mixtures Of $G$ Priors For Bayesian Variable Selection                                                                                                                     | 279      | 22                                     |
| z21        | A Brief Review Of Approaches To Non-Ignorable Non-Response                                                                                                                 | 4        | 68                                     |
| z21        | Missing-Data Methods For Generalized Linear Models: A Comparative Review                                                                                                   | 148      | 64                                     |
| z21        | Analysis Of Longitudinal Data With Drop-Out: Objectives, Assumptions And A<br>Proposal                                                                                     | 40       | 53                                     |
| z22        | Group Sequential And Adaptive Designs - A Review Of Basic Concepts And<br>Points Of Discussion                                                                             | 12       | 76                                     |
| z22        | Twenty-Five Years Of Confirmatory Adaptive Designs: Opportunities And<br>Pitfalls                                                                                          | 53       | 113                                    |
| z22        | Adaptive Seamless Designs: Selection And Prospective Testing Of Hypotheses                                                                                                 | 31       | 61                                     |
| z23        | Semiparametric Regression During 2003-2007                                                                                                                                 | 58       | 219                                    |
| z23        | Twenty Years Of P-Splines                                                                                                                                                  | 42       | 103                                    |
| z23        | Fast Stable Restricted Maximum Likelihood And Marginal Likelihood<br>Estimation Of Semiparametric Generalized Linear Models                                                | 224      | 35                                     |
| z24        | Random Matrix Theory In Statistics: A Review                                                                                                                               | 53       | 148                                    |
| z24        | Estimating Structured High-Dimensional Covariance And Precision Matrices:<br>Optimal Rates And Adaptive Estimation                                                         | 63       | 96                                     |
| z24        | Recent Developments In High Dimensional Covariance Estimation And Its<br>Related Issues, A Review                                                                          | 2        | 54                                     |
| z25        | Bayesian Computation: A Summary Of The Current State, And Samples<br>Backwards And Forwards                                                                                | 20       | 101                                    |

Table 39: Z (outgoing citation) factor hubs - k = 30,  $\ell_z = 70000$ ,  $\ell_y = 70000$  (continued)

| ID  | Title                                                                                                       | Cited by | Cites |
|-----|-------------------------------------------------------------------------------------------------------------|----------|-------|
| z25 | The Hastings Algorithm At Fifty                                                                             | 7        | 78    |
| z25 | A Short History Of Markov Chain Monte Carlo: Subjective Recollections From Incomplete Data                  | 17       | 68    |
| z26 | Nonparametric Inference With Generalized Likelihood Ratio Tests                                             | 46       | 67    |
| z26 | Statistical Inference In Partially-Varying-Coefficient Single-Index Model                                   | 26       | 27    |
| z26 | Varying Coefficient Regression Models: A Review And New Developments                                        | 40       | 64    |
| z27 | Joint Modeling Of Longitudinal And Time-To-Event Data: An Overview                                          | 341      | 36    |
| z27 | Missing Data Methods In Longitudinal Studies: A Review                                                      | 76       | 79    |
| z27 | Joint Modeling Of Longitudinal And Survival Data Via A Common Frailty                                       | 22       | 21    |
| z28 | Causal Inference Using Potential Outcomes: Design, Modeling, Decisions                                      | 175      | 32    |
| z28 | Instrumental Variables: An Econometrician's Perspective                                                     | 25       | 88    |
| z28 | Causal Inference: A Missing Data Perspective                                                                | 21       | 104   |
| z29 | Modified Liu-Type Estimator Based On (Rk) Class Estimator                                                   | 17       | 18    |
| z29 | A Simulation Study On Some Restricted Ridge Regression Estimators                                           | 12       | 17    |
| z29 | Performance Of Kibria's Method For The Heteroscedastic Ridge Regression<br>Model: Some Monte Carlo Evidence | 20       | 24    |
| z30 | Piecewise Linear Approximations For Cure Rate Models And Associated                                         | 20       | 44    |
|     | Inferential Issues                                                                                          |          |       |
| z30 | Proportional Hazards Under Conway-Maxwell-Poisson Cure Rate Model And<br>Associated Inference               | 8        | 31    |
| z30 | A Support Vector Machine-Based Cure Rate Model For Interval Censored Data                                   | 0        | 50    |